Matches in SemOpenAlex for { <https://semopenalex.org/work/W3097919189> ?p ?o ?g. }
- W3097919189 endingPage "124314" @default.
- W3097919189 startingPage "124314" @default.
- W3097919189 abstract "Hydrogen production from renewable resources via microbial electrolysis cells (MECs) is a promising approach for sustainable energy production. Yet high hydrogen yield from real feedstocks has not been demonstrated in up-scaled MECs. In this study, a 10-L single chamber MEC with a high electrode surface area to volume ratio (66 m2/m3) was constructed and electroactive cathodic biofilms were enriched for hydrogen evolution reaction. A high hydrogen yield of 91% was achieved using lignocellulosic hydrolysate with a hydrogen production rate of 0.71 L/L/D at an organic loading rate of 0.4 g/D. The anodic and cathodic microbial communities, with Enterococcus spp. as the known electroactive bacteria, were capable of achieving current densities of 13.7 A/m2 and 16.5 A/m2, respectively. A machine learning algorithm was used to investigate the correlation between community data and electrochemical performance, and the critical genera on determining current density were identified." @default.
- W3097919189 created "2020-11-09" @default.
- W3097919189 creator A5006097541 @default.
- W3097919189 creator A5038387324 @default.
- W3097919189 creator A5052087102 @default.
- W3097919189 creator A5068143805 @default.
- W3097919189 creator A5077343682 @default.
- W3097919189 date "2021-01-01" @default.
- W3097919189 modified "2023-10-18" @default.
- W3097919189 title "Hydrogen production from lignocellulosic hydrolysate in an up-scaled microbial electrolysis cell with stacked bio-electrodes" @default.
- W3097919189 cites W1563273659 @default.
- W3097919189 cites W1579370462 @default.
- W3097919189 cites W1980259042 @default.
- W3097919189 cites W1991757102 @default.
- W3097919189 cites W2015676447 @default.
- W3097919189 cites W2030137165 @default.
- W3097919189 cites W2036828920 @default.
- W3097919189 cites W2041675051 @default.
- W3097919189 cites W2044355461 @default.
- W3097919189 cites W2059423726 @default.
- W3097919189 cites W2059529321 @default.
- W3097919189 cites W2065092506 @default.
- W3097919189 cites W2070529960 @default.
- W3097919189 cites W2082485525 @default.
- W3097919189 cites W2088456481 @default.
- W3097919189 cites W2094079982 @default.
- W3097919189 cites W2105848017 @default.
- W3097919189 cites W2109435090 @default.
- W3097919189 cites W2116582125 @default.
- W3097919189 cites W2120722474 @default.
- W3097919189 cites W2121865431 @default.
- W3097919189 cites W2127577084 @default.
- W3097919189 cites W2149511856 @default.
- W3097919189 cites W2155120873 @default.
- W3097919189 cites W2159772134 @default.
- W3097919189 cites W2165243476 @default.
- W3097919189 cites W2337341264 @default.
- W3097919189 cites W2346192029 @default.
- W3097919189 cites W2414314783 @default.
- W3097919189 cites W2517933961 @default.
- W3097919189 cites W2592804210 @default.
- W3097919189 cites W2597326039 @default.
- W3097919189 cites W2621249092 @default.
- W3097919189 cites W2625240981 @default.
- W3097919189 cites W2733480896 @default.
- W3097919189 cites W2735485702 @default.
- W3097919189 cites W2766366295 @default.
- W3097919189 cites W2775628928 @default.
- W3097919189 cites W2801555871 @default.
- W3097919189 cites W2805230682 @default.
- W3097919189 cites W2809214854 @default.
- W3097919189 cites W2840480151 @default.
- W3097919189 cites W2906393954 @default.
- W3097919189 cites W2940702478 @default.
- W3097919189 cites W2963929932 @default.
- W3097919189 cites W2991749065 @default.
- W3097919189 cites W2991816849 @default.
- W3097919189 cites W3006508130 @default.
- W3097919189 cites W3042680987 @default.
- W3097919189 doi "https://doi.org/10.1016/j.biortech.2020.124314" @default.
- W3097919189 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33147527" @default.
- W3097919189 hasPublicationYear "2021" @default.
- W3097919189 type Work @default.
- W3097919189 sameAs 3097919189 @default.
- W3097919189 citedByCount "25" @default.
- W3097919189 countsByYear W30979191892021 @default.
- W3097919189 countsByYear W30979191892022 @default.
- W3097919189 countsByYear W30979191892023 @default.
- W3097919189 crossrefType "journal-article" @default.
- W3097919189 hasAuthorship W3097919189A5006097541 @default.
- W3097919189 hasAuthorship W3097919189A5038387324 @default.
- W3097919189 hasAuthorship W3097919189A5052087102 @default.
- W3097919189 hasAuthorship W3097919189A5068143805 @default.
- W3097919189 hasAuthorship W3097919189A5077343682 @default.
- W3097919189 hasBestOaLocation W30979191891 @default.
- W3097919189 hasConcept C1124016 @default.
- W3097919189 hasConcept C127413603 @default.
- W3097919189 hasConcept C147789679 @default.
- W3097919189 hasConcept C163127949 @default.
- W3097919189 hasConcept C165337572 @default.
- W3097919189 hasConcept C17525397 @default.
- W3097919189 hasConcept C178790620 @default.
- W3097919189 hasConcept C185592680 @default.
- W3097919189 hasConcept C192562407 @default.
- W3097919189 hasConcept C202189072 @default.
- W3097919189 hasConcept C205871581 @default.
- W3097919189 hasConcept C2778649198 @default.
- W3097919189 hasConcept C28800991 @default.
- W3097919189 hasConcept C42360764 @default.
- W3097919189 hasConcept C512968161 @default.
- W3097919189 hasConcept C528095902 @default.
- W3097919189 hasConcept C52859227 @default.
- W3097919189 hasConcept C55493867 @default.
- W3097919189 hasConcept C68801617 @default.
- W3097919189 hasConcept C89395315 @default.
- W3097919189 hasConcept C94412978 @default.
- W3097919189 hasConceptScore W3097919189C1124016 @default.
- W3097919189 hasConceptScore W3097919189C127413603 @default.