Matches in SemOpenAlex for { <https://semopenalex.org/work/W3098136764> ?p ?o ?g. }
- W3098136764 abstract "While many deep learning (DL)-based networking systems have demonstrated superior performance, the underlying Deep Neural Networks (DNNs) remain blackboxes and stay uninterpretable for network operators. The lack of interpretability makes DL-based networking systems prohibitive to deploy in practice. In this paper, we propose Metis, a framework that provides interpretability for two general categories of networking problems spanning local and global control. Accordingly, Metis introduces two different interpretation methods based on decision tree and hypergraph, where it converts DNN policies to interpretable rule-based controllers and highlight critical components based on analysis over hypergraph. We evaluate Metis over two categories of state-of-the-art DL-based networking systems and show that Metis provides human-readable interpretations while preserving nearly no degradation in performance. We further present four concrete use cases of Metis, showcasing how Metis helps network operators to design, debug, deploy, and ad-hoc adjust DL-based networking systems." @default.
- W3098136764 created "2020-11-23" @default.
- W3098136764 creator A5004578457 @default.
- W3098136764 creator A5056657952 @default.
- W3098136764 creator A5066915269 @default.
- W3098136764 creator A5071829058 @default.
- W3098136764 creator A5078346774 @default.
- W3098136764 creator A5084370010 @default.
- W3098136764 date "2020-07-30" @default.
- W3098136764 modified "2023-10-14" @default.
- W3098136764 title "Interpreting Deep Learning-Based Networking Systems" @default.
- W3098136764 cites W1604329830 @default.
- W3098136764 cites W1849277567 @default.
- W3098136764 cites W1965555277 @default.
- W3098136764 cites W1976944900 @default.
- W3098136764 cites W1994926493 @default.
- W3098136764 cites W1995875735 @default.
- W3098136764 cites W2033072307 @default.
- W3098136764 cites W2055165550 @default.
- W3098136764 cites W2108598243 @default.
- W3098136764 cites W2114234222 @default.
- W3098136764 cites W2117884704 @default.
- W3098136764 cites W2145339207 @default.
- W3098136764 cites W2150453038 @default.
- W3098136764 cites W2157614013 @default.
- W3098136764 cites W2164740236 @default.
- W3098136764 cites W2167407752 @default.
- W3098136764 cites W2436270489 @default.
- W3098136764 cites W2744628735 @default.
- W3098136764 cites W2762776925 @default.
- W3098136764 cites W2764024122 @default.
- W3098136764 cites W2788376297 @default.
- W3098136764 cites W2799007037 @default.
- W3098136764 cites W2807992309 @default.
- W3098136764 cites W2810731248 @default.
- W3098136764 cites W2883529420 @default.
- W3098136764 cites W2892880750 @default.
- W3098136764 cites W2900509250 @default.
- W3098136764 cites W2913856657 @default.
- W3098136764 cites W2919115771 @default.
- W3098136764 cites W2949913798 @default.
- W3098136764 cites W2962774976 @default.
- W3098136764 cites W2963191323 @default.
- W3098136764 cites W2963232267 @default.
- W3098136764 cites W2963749936 @default.
- W3098136764 cites W2964961855 @default.
- W3098136764 cites W2967062414 @default.
- W3098136764 cites W2967394917 @default.
- W3098136764 cites W2968986602 @default.
- W3098136764 cites W2982562362 @default.
- W3098136764 cites W3101578538 @default.
- W3098136764 cites W3104371626 @default.
- W3098136764 cites W3125537303 @default.
- W3098136764 cites W4251184400 @default.
- W3098136764 doi "https://doi.org/10.1145/3387514.3405859" @default.
- W3098136764 hasPublicationYear "2020" @default.
- W3098136764 type Work @default.
- W3098136764 sameAs 3098136764 @default.
- W3098136764 citedByCount "49" @default.
- W3098136764 countsByYear W30981367642020 @default.
- W3098136764 countsByYear W30981367642021 @default.
- W3098136764 countsByYear W30981367642022 @default.
- W3098136764 countsByYear W30981367642023 @default.
- W3098136764 crossrefType "proceedings-article" @default.
- W3098136764 hasAuthorship W3098136764A5004578457 @default.
- W3098136764 hasAuthorship W3098136764A5056657952 @default.
- W3098136764 hasAuthorship W3098136764A5066915269 @default.
- W3098136764 hasAuthorship W3098136764A5071829058 @default.
- W3098136764 hasAuthorship W3098136764A5078346774 @default.
- W3098136764 hasAuthorship W3098136764A5084370010 @default.
- W3098136764 hasBestOaLocation W30981367642 @default.
- W3098136764 hasConcept C118615104 @default.
- W3098136764 hasConcept C119857082 @default.
- W3098136764 hasConcept C136764020 @default.
- W3098136764 hasConcept C154945302 @default.
- W3098136764 hasConcept C168065819 @default.
- W3098136764 hasConcept C199360897 @default.
- W3098136764 hasConcept C2780705272 @default.
- W3098136764 hasConcept C2781067378 @default.
- W3098136764 hasConcept C2781221856 @default.
- W3098136764 hasConcept C33923547 @default.
- W3098136764 hasConcept C41008148 @default.
- W3098136764 hasConceptScore W3098136764C118615104 @default.
- W3098136764 hasConceptScore W3098136764C119857082 @default.
- W3098136764 hasConceptScore W3098136764C136764020 @default.
- W3098136764 hasConceptScore W3098136764C154945302 @default.
- W3098136764 hasConceptScore W3098136764C168065819 @default.
- W3098136764 hasConceptScore W3098136764C199360897 @default.
- W3098136764 hasConceptScore W3098136764C2780705272 @default.
- W3098136764 hasConceptScore W3098136764C2781067378 @default.
- W3098136764 hasConceptScore W3098136764C2781221856 @default.
- W3098136764 hasConceptScore W3098136764C33923547 @default.
- W3098136764 hasConceptScore W3098136764C41008148 @default.
- W3098136764 hasFunder F4320327720 @default.
- W3098136764 hasLocation W30981367641 @default.
- W3098136764 hasLocation W30981367642 @default.
- W3098136764 hasLocation W30981367643 @default.
- W3098136764 hasLocation W30981367644 @default.
- W3098136764 hasOpenAccess W3098136764 @default.
- W3098136764 hasPrimaryLocation W30981367641 @default.