Matches in SemOpenAlex for { <https://semopenalex.org/work/W3098162545> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W3098162545 abstract "This article investigates the use of a model-based neural-network for the traffic reconstruction problem using noisy measurements coming from probe vehicles. The traffic state is assumed to be the density only, modeled by a partial differential equation. There exist various methods for reconstructing the density in that case. However, none of them perform well with noise and very few deal with lagrangian measurements. This paper introduces a method that can reduce the processes of identification, reconstruction, prediction, and noise rejection into a single optimization problem. Numerical simulations, based either on a macroscopic or a microscopic model, show good performance for a moderate computational burden." @default.
- W3098162545 created "2020-11-23" @default.
- W3098162545 creator A5000499208 @default.
- W3098162545 creator A5045975901 @default.
- W3098162545 creator A5068894063 @default.
- W3098162545 creator A5091588080 @default.
- W3098162545 date "2020-11-10" @default.
- W3098162545 modified "2023-10-02" @default.
- W3098162545 title "Learning-based Traffic State Reconstruction using Probe Vehicles" @default.
- W3098162545 cites W16548326 @default.
- W3098162545 cites W1899249567 @default.
- W3098162545 cites W2016535998 @default.
- W3098162545 cites W2063146932 @default.
- W3098162545 cites W2088820595 @default.
- W3098162545 cites W2095797625 @default.
- W3098162545 cites W2169991130 @default.
- W3098162545 cites W2557283755 @default.
- W3098162545 cites W2749028154 @default.
- W3098162545 cites W2766693351 @default.
- W3098162545 cites W2796909983 @default.
- W3098162545 cites W2896056138 @default.
- W3098162545 cites W2899283552 @default.
- W3098162545 cites W2935778955 @default.
- W3098162545 cites W2969376923 @default.
- W3098162545 cites W3011313639 @default.
- W3098162545 cites W3114964281 @default.
- W3098162545 cites W3117049966 @default.
- W3098162545 cites W3120854574 @default.
- W3098162545 cites W924558455 @default.
- W3098162545 doi "https://doi.org/10.48550/arxiv.2011.05031" @default.
- W3098162545 hasPublicationYear "2020" @default.
- W3098162545 type Work @default.
- W3098162545 sameAs 3098162545 @default.
- W3098162545 citedByCount "4" @default.
- W3098162545 countsByYear W30981625452021 @default.
- W3098162545 crossrefType "posted-content" @default.
- W3098162545 hasAuthorship W3098162545A5000499208 @default.
- W3098162545 hasAuthorship W3098162545A5045975901 @default.
- W3098162545 hasAuthorship W3098162545A5068894063 @default.
- W3098162545 hasAuthorship W3098162545A5091588080 @default.
- W3098162545 hasBestOaLocation W30981625451 @default.
- W3098162545 hasConcept C11413529 @default.
- W3098162545 hasConcept C115961682 @default.
- W3098162545 hasConcept C116834253 @default.
- W3098162545 hasConcept C126255220 @default.
- W3098162545 hasConcept C134306372 @default.
- W3098162545 hasConcept C154945302 @default.
- W3098162545 hasConcept C28826006 @default.
- W3098162545 hasConcept C33923547 @default.
- W3098162545 hasConcept C41008148 @default.
- W3098162545 hasConcept C48103436 @default.
- W3098162545 hasConcept C50644808 @default.
- W3098162545 hasConcept C53469067 @default.
- W3098162545 hasConcept C59822182 @default.
- W3098162545 hasConcept C86803240 @default.
- W3098162545 hasConcept C93779851 @default.
- W3098162545 hasConcept C99498987 @default.
- W3098162545 hasConceptScore W3098162545C11413529 @default.
- W3098162545 hasConceptScore W3098162545C115961682 @default.
- W3098162545 hasConceptScore W3098162545C116834253 @default.
- W3098162545 hasConceptScore W3098162545C126255220 @default.
- W3098162545 hasConceptScore W3098162545C134306372 @default.
- W3098162545 hasConceptScore W3098162545C154945302 @default.
- W3098162545 hasConceptScore W3098162545C28826006 @default.
- W3098162545 hasConceptScore W3098162545C33923547 @default.
- W3098162545 hasConceptScore W3098162545C41008148 @default.
- W3098162545 hasConceptScore W3098162545C48103436 @default.
- W3098162545 hasConceptScore W3098162545C50644808 @default.
- W3098162545 hasConceptScore W3098162545C53469067 @default.
- W3098162545 hasConceptScore W3098162545C59822182 @default.
- W3098162545 hasConceptScore W3098162545C86803240 @default.
- W3098162545 hasConceptScore W3098162545C93779851 @default.
- W3098162545 hasConceptScore W3098162545C99498987 @default.
- W3098162545 hasLocation W30981625451 @default.
- W3098162545 hasLocation W30981625452 @default.
- W3098162545 hasOpenAccess W3098162545 @default.
- W3098162545 hasPrimaryLocation W30981625451 @default.
- W3098162545 hasRelatedWork W1572546812 @default.
- W3098162545 hasRelatedWork W2362972152 @default.
- W3098162545 hasRelatedWork W2363804782 @default.
- W3098162545 hasRelatedWork W2386387936 @default.
- W3098162545 hasRelatedWork W2392110728 @default.
- W3098162545 hasRelatedWork W2806737128 @default.
- W3098162545 hasRelatedWork W3098175809 @default.
- W3098162545 hasRelatedWork W3107474891 @default.
- W3098162545 hasRelatedWork W3118927209 @default.
- W3098162545 hasRelatedWork W4248817909 @default.
- W3098162545 isParatext "false" @default.
- W3098162545 isRetracted "false" @default.
- W3098162545 magId "3098162545" @default.
- W3098162545 workType "article" @default.