Matches in SemOpenAlex for { <https://semopenalex.org/work/W3098296788> ?p ?o ?g. }
- W3098296788 endingPage "3717" @default.
- W3098296788 startingPage "3717" @default.
- W3098296788 abstract "Deep learning has been extensively applied in many optical imaging problems in recent years. Despite the success, the limitations and drawbacks of deep learning in optical imaging have been seldom investigated. In this work, we show that conventional linear-regression-based methods can outperform the previously proposed deep learning approaches for two black-box optical imaging problems in some extent. Deep learning demonstrates its weakness especially when the number of training samples is small. The advantages and disadvantages of linear-regression-based methods and deep learning are analyzed and compared. Since many optical systems are essentially linear, a deep learning network containing many nonlinearity functions sometimes may not be the most suitable option." @default.
- W3098296788 created "2020-11-23" @default.
- W3098296788 creator A5008020717 @default.
- W3098296788 creator A5026990670 @default.
- W3098296788 creator A5038207720 @default.
- W3098296788 creator A5049601762 @default.
- W3098296788 creator A5065134183 @default.
- W3098296788 date "2020-01-27" @default.
- W3098296788 modified "2023-10-18" @default.
- W3098296788 title "Does deep learning always outperform simple linear regression in optical imaging?" @default.
- W3098296788 cites W1987645145 @default.
- W3098296788 cites W2112796928 @default.
- W3098296788 cites W2122548617 @default.
- W3098296788 cites W2139929113 @default.
- W3098296788 cites W2593966629 @default.
- W3098296788 cites W2612688942 @default.
- W3098296788 cites W2614949728 @default.
- W3098296788 cites W2734545110 @default.
- W3098296788 cites W2766992522 @default.
- W3098296788 cites W2782977076 @default.
- W3098296788 cites W2788109278 @default.
- W3098296788 cites W2792179230 @default.
- W3098296788 cites W2794863878 @default.
- W3098296788 cites W2797033345 @default.
- W3098296788 cites W2797856256 @default.
- W3098296788 cites W2802629520 @default.
- W3098296788 cites W2884363302 @default.
- W3098296788 cites W2888054313 @default.
- W3098296788 cites W2888060456 @default.
- W3098296788 cites W2901589656 @default.
- W3098296788 cites W2907716704 @default.
- W3098296788 cites W2908872770 @default.
- W3098296788 cites W2913539075 @default.
- W3098296788 cites W2925047271 @default.
- W3098296788 cites W2942617529 @default.
- W3098296788 cites W2942834645 @default.
- W3098296788 cites W2944779716 @default.
- W3098296788 cites W2948803529 @default.
- W3098296788 cites W2949739898 @default.
- W3098296788 cites W2952641550 @default.
- W3098296788 cites W2955079933 @default.
- W3098296788 cites W2960681070 @default.
- W3098296788 cites W2960836233 @default.
- W3098296788 cites W2963060832 @default.
- W3098296788 cites W2963134245 @default.
- W3098296788 cites W2964231206 @default.
- W3098296788 cites W2970610508 @default.
- W3098296788 cites W2971036980 @default.
- W3098296788 cites W3098248527 @default.
- W3098296788 cites W3099659020 @default.
- W3098296788 cites W3099853468 @default.
- W3098296788 cites W3101025873 @default.
- W3098296788 cites W3102127550 @default.
- W3098296788 doi "https://doi.org/10.1364/oe.382319" @default.
- W3098296788 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/32122034" @default.
- W3098296788 hasPublicationYear "2020" @default.
- W3098296788 type Work @default.
- W3098296788 sameAs 3098296788 @default.
- W3098296788 citedByCount "45" @default.
- W3098296788 countsByYear W30982967882020 @default.
- W3098296788 countsByYear W30982967882021 @default.
- W3098296788 countsByYear W30982967882022 @default.
- W3098296788 countsByYear W30982967882023 @default.
- W3098296788 crossrefType "journal-article" @default.
- W3098296788 hasAuthorship W3098296788A5008020717 @default.
- W3098296788 hasAuthorship W3098296788A5026990670 @default.
- W3098296788 hasAuthorship W3098296788A5038207720 @default.
- W3098296788 hasAuthorship W3098296788A5049601762 @default.
- W3098296788 hasAuthorship W3098296788A5065134183 @default.
- W3098296788 hasBestOaLocation W30982967881 @default.
- W3098296788 hasConcept C105795698 @default.
- W3098296788 hasConcept C108583219 @default.
- W3098296788 hasConcept C119857082 @default.
- W3098296788 hasConcept C149769383 @default.
- W3098296788 hasConcept C153180895 @default.
- W3098296788 hasConcept C154945302 @default.
- W3098296788 hasConcept C33923547 @default.
- W3098296788 hasConcept C41008148 @default.
- W3098296788 hasConcept C48921125 @default.
- W3098296788 hasConcept C83546350 @default.
- W3098296788 hasConceptScore W3098296788C105795698 @default.
- W3098296788 hasConceptScore W3098296788C108583219 @default.
- W3098296788 hasConceptScore W3098296788C119857082 @default.
- W3098296788 hasConceptScore W3098296788C149769383 @default.
- W3098296788 hasConceptScore W3098296788C153180895 @default.
- W3098296788 hasConceptScore W3098296788C154945302 @default.
- W3098296788 hasConceptScore W3098296788C33923547 @default.
- W3098296788 hasConceptScore W3098296788C41008148 @default.
- W3098296788 hasConceptScore W3098296788C48921125 @default.
- W3098296788 hasConceptScore W3098296788C83546350 @default.
- W3098296788 hasFunder F4320321001 @default.
- W3098296788 hasFunder F4320321921 @default.
- W3098296788 hasFunder F4320327783 @default.
- W3098296788 hasIssue "3" @default.
- W3098296788 hasLocation W30982967881 @default.
- W3098296788 hasLocation W30982967882 @default.
- W3098296788 hasLocation W30982967883 @default.
- W3098296788 hasOpenAccess W3098296788 @default.