Matches in SemOpenAlex for { <https://semopenalex.org/work/W3098311904> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3098311904 abstract "Imbalanced dataset is occurred due to uneven distribution of data available in the real world such as disposition of complaints on government offices in Bandung. Consequently, multi-label text categorization algorithms may not produce the best performance because classifiers tend to be weighed down by the majority of the data and ignore the minority. In this paper, Bagging and Adaptive Boosting algorithms are employed to handle the issue and improve the performance of text categorization. The result is evaluated with four evaluation metrics such as hamming loss, subset accuracy, example-based accuracy and micro-averaged f-measure. Bagging.ML-LP with SMO weak classifier is the best performer in terms of subset accuracy and example-based accuracy. Bagging.ML-BR with SMO weak classifier has the best micro-averaged f-measure among all. In other hand, AdaBoost.MH with J48 weak classifier has the lowest hamming loss value. Thus, both algorithms have high potential in boosting the performance of text categorization, but only for certain weak classifiers. However, bagging has more potential than adaptive boosting in increasing the accuracy of minority labels." @default.
- W3098311904 created "2020-11-23" @default.
- W3098311904 creator A5031833654 @default.
- W3098311904 creator A5085516032 @default.
- W3098311904 date "2015-08-01" @default.
- W3098311904 modified "2023-09-28" @default.
- W3098311904 title "Handling imbalanced dataset in multi-label text categorization using Bagging and Adaptive Boosting" @default.
- W3098311904 cites W1985457203 @default.
- W3098311904 cites W2053724458 @default.
- W3098311904 cites W2062611449 @default.
- W3098311904 cites W2114315281 @default.
- W3098311904 cites W2137484796 @default.
- W3098311904 cites W2145827727 @default.
- W3098311904 cites W2146241755 @default.
- W3098311904 cites W2164330572 @default.
- W3098311904 cites W2547928088 @default.
- W3098311904 cites W2911964244 @default.
- W3098311904 cites W4212883601 @default.
- W3098311904 cites W4244952642 @default.
- W3098311904 doi "https://doi.org/10.1109/iceei.2015.7352552" @default.
- W3098311904 hasPublicationYear "2015" @default.
- W3098311904 type Work @default.
- W3098311904 sameAs 3098311904 @default.
- W3098311904 citedByCount "5" @default.
- W3098311904 countsByYear W30983119042021 @default.
- W3098311904 countsByYear W30983119042022 @default.
- W3098311904 countsByYear W30983119042023 @default.
- W3098311904 crossrefType "proceedings-article" @default.
- W3098311904 hasAuthorship W3098311904A5031833654 @default.
- W3098311904 hasAuthorship W3098311904A5085516032 @default.
- W3098311904 hasBestOaLocation W30983119042 @default.
- W3098311904 hasConcept C11413529 @default.
- W3098311904 hasConcept C119857082 @default.
- W3098311904 hasConcept C12267149 @default.
- W3098311904 hasConcept C141404830 @default.
- W3098311904 hasConcept C153180895 @default.
- W3098311904 hasConcept C154945302 @default.
- W3098311904 hasConcept C157125643 @default.
- W3098311904 hasConcept C193319292 @default.
- W3098311904 hasConcept C2986744138 @default.
- W3098311904 hasConcept C41008148 @default.
- W3098311904 hasConcept C46686674 @default.
- W3098311904 hasConcept C52001869 @default.
- W3098311904 hasConcept C52003472 @default.
- W3098311904 hasConcept C57273362 @default.
- W3098311904 hasConcept C73150493 @default.
- W3098311904 hasConcept C94124525 @default.
- W3098311904 hasConcept C95623464 @default.
- W3098311904 hasConceptScore W3098311904C11413529 @default.
- W3098311904 hasConceptScore W3098311904C119857082 @default.
- W3098311904 hasConceptScore W3098311904C12267149 @default.
- W3098311904 hasConceptScore W3098311904C141404830 @default.
- W3098311904 hasConceptScore W3098311904C153180895 @default.
- W3098311904 hasConceptScore W3098311904C154945302 @default.
- W3098311904 hasConceptScore W3098311904C157125643 @default.
- W3098311904 hasConceptScore W3098311904C193319292 @default.
- W3098311904 hasConceptScore W3098311904C2986744138 @default.
- W3098311904 hasConceptScore W3098311904C41008148 @default.
- W3098311904 hasConceptScore W3098311904C46686674 @default.
- W3098311904 hasConceptScore W3098311904C52001869 @default.
- W3098311904 hasConceptScore W3098311904C52003472 @default.
- W3098311904 hasConceptScore W3098311904C57273362 @default.
- W3098311904 hasConceptScore W3098311904C73150493 @default.
- W3098311904 hasConceptScore W3098311904C94124525 @default.
- W3098311904 hasConceptScore W3098311904C95623464 @default.
- W3098311904 hasLocation W30983119041 @default.
- W3098311904 hasLocation W30983119042 @default.
- W3098311904 hasOpenAccess W3098311904 @default.
- W3098311904 hasPrimaryLocation W30983119041 @default.
- W3098311904 hasRelatedWork W1499804031 @default.
- W3098311904 hasRelatedWork W1987859285 @default.
- W3098311904 hasRelatedWork W1996541855 @default.
- W3098311904 hasRelatedWork W2003125512 @default.
- W3098311904 hasRelatedWork W2096475118 @default.
- W3098311904 hasRelatedWork W2340694410 @default.
- W3098311904 hasRelatedWork W2543725295 @default.
- W3098311904 hasRelatedWork W3098311904 @default.
- W3098311904 hasRelatedWork W4313640622 @default.
- W3098311904 hasRelatedWork W4318570622 @default.
- W3098311904 isParatext "false" @default.
- W3098311904 isRetracted "false" @default.
- W3098311904 magId "3098311904" @default.
- W3098311904 workType "article" @default.