Matches in SemOpenAlex for { <https://semopenalex.org/work/W3098339701> ?p ?o ?g. }
- W3098339701 endingPage "2195" @default.
- W3098339701 startingPage "2188" @default.
- W3098339701 abstract "Robot-assisted surgery is an emerging technology which has undergone rapid growth with the development of robotics and imaging systems. Innovations in vision, haptics and accurate movements of robot arms have enabled surgeons to perform precise minimally invasive surgeries. Real-time semantic segmentation of the robotic instruments and tissues is a crucial step in robot-assisted surgery. Accurate and efficient segmentation of the surgical scene not only aids in the identification and tracking of instruments but also provided contextual information about the different tissues and instruments being operated with. For this purpose, we have developed a light-weight cascaded convolutional neural network (CNN) to segment the surgical instruments from high-resolution videos obtained from a commercial robotic system. We propose a multi-resolution feature fusion module (MFF) to fuse the feature maps of different dimensions and channels from the auxiliary and main branch. We also introduce a novel way of combining auxiliary loss and adversarial loss to regularize the segmentation model. Auxiliary loss helps the model to learn low-resolution features, and adversarial loss improves the segmentation prediction by learning higher order structural information. The model also consists of a light-weight spatial pyramid pooling (SPP) unit to aggregate rich contextual information in the intermediate stage. We show that our model surpasses existing algorithms for pixel-wise segmentation of surgical instruments in both prediction accuracy and segmentation time of high-resolution videos." @default.
- W3098339701 created "2020-11-23" @default.
- W3098339701 creator A5005221441 @default.
- W3098339701 creator A5032340829 @default.
- W3098339701 creator A5066653567 @default.
- W3098339701 creator A5090430262 @default.
- W3098339701 date "2019-04-01" @default.
- W3098339701 modified "2023-10-04" @default.
- W3098339701 title "Real-Time Instrument Segmentation in Robotic Surgery Using Auxiliary Supervised Deep Adversarial Learning" @default.
- W3098339701 cites W1881731092 @default.
- W3098339701 cites W1934600457 @default.
- W3098339701 cites W1966906328 @default.
- W3098339701 cites W1991025957 @default.
- W3098339701 cites W2065693146 @default.
- W3098339701 cites W2088392499 @default.
- W3098339701 cites W2098074239 @default.
- W3098339701 cites W2138495364 @default.
- W3098339701 cites W2142529775 @default.
- W3098339701 cites W2179331991 @default.
- W3098339701 cites W2194775991 @default.
- W3098339701 cites W2212512009 @default.
- W3098339701 cites W2295179809 @default.
- W3098339701 cites W2301358467 @default.
- W3098339701 cites W2316166657 @default.
- W3098339701 cites W2380366973 @default.
- W3098339701 cites W2432555109 @default.
- W3098339701 cites W2527408187 @default.
- W3098339701 cites W2560023338 @default.
- W3098339701 cites W2593483954 @default.
- W3098339701 cites W2604690505 @default.
- W3098339701 cites W2741962992 @default.
- W3098339701 cites W2757977547 @default.
- W3098339701 cites W2781121728 @default.
- W3098339701 cites W2781927447 @default.
- W3098339701 cites W2787845149 @default.
- W3098339701 cites W2792767783 @default.
- W3098339701 cites W2798221358 @default.
- W3098339701 cites W2884065486 @default.
- W3098339701 cites W2884930120 @default.
- W3098339701 cites W2890354008 @default.
- W3098339701 cites W2962775523 @default.
- W3098339701 cites W2964217532 @default.
- W3098339701 cites W3105636206 @default.
- W3098339701 cites W3124802609 @default.
- W3098339701 cites W432289371 @default.
- W3098339701 doi "https://doi.org/10.1109/lra.2019.2900854" @default.
- W3098339701 hasPublicationYear "2019" @default.
- W3098339701 type Work @default.
- W3098339701 sameAs 3098339701 @default.
- W3098339701 citedByCount "70" @default.
- W3098339701 countsByYear W30983397012019 @default.
- W3098339701 countsByYear W30983397012020 @default.
- W3098339701 countsByYear W30983397012021 @default.
- W3098339701 countsByYear W30983397012022 @default.
- W3098339701 countsByYear W30983397012023 @default.
- W3098339701 crossrefType "journal-article" @default.
- W3098339701 hasAuthorship W3098339701A5005221441 @default.
- W3098339701 hasAuthorship W3098339701A5032340829 @default.
- W3098339701 hasAuthorship W3098339701A5066653567 @default.
- W3098339701 hasAuthorship W3098339701A5090430262 @default.
- W3098339701 hasBestOaLocation W30983397012 @default.
- W3098339701 hasConcept C103203806 @default.
- W3098339701 hasConcept C108583219 @default.
- W3098339701 hasConcept C120665830 @default.
- W3098339701 hasConcept C121332964 @default.
- W3098339701 hasConcept C138885662 @default.
- W3098339701 hasConcept C142575187 @default.
- W3098339701 hasConcept C154945302 @default.
- W3098339701 hasConcept C2776401178 @default.
- W3098339701 hasConcept C31972630 @default.
- W3098339701 hasConcept C34413123 @default.
- W3098339701 hasConcept C41008148 @default.
- W3098339701 hasConcept C41895202 @default.
- W3098339701 hasConcept C81363708 @default.
- W3098339701 hasConcept C89600930 @default.
- W3098339701 hasConcept C90509273 @default.
- W3098339701 hasConceptScore W3098339701C103203806 @default.
- W3098339701 hasConceptScore W3098339701C108583219 @default.
- W3098339701 hasConceptScore W3098339701C120665830 @default.
- W3098339701 hasConceptScore W3098339701C121332964 @default.
- W3098339701 hasConceptScore W3098339701C138885662 @default.
- W3098339701 hasConceptScore W3098339701C142575187 @default.
- W3098339701 hasConceptScore W3098339701C154945302 @default.
- W3098339701 hasConceptScore W3098339701C2776401178 @default.
- W3098339701 hasConceptScore W3098339701C31972630 @default.
- W3098339701 hasConceptScore W3098339701C34413123 @default.
- W3098339701 hasConceptScore W3098339701C41008148 @default.
- W3098339701 hasConceptScore W3098339701C41895202 @default.
- W3098339701 hasConceptScore W3098339701C81363708 @default.
- W3098339701 hasConceptScore W3098339701C89600930 @default.
- W3098339701 hasConceptScore W3098339701C90509273 @default.
- W3098339701 hasIssue "2" @default.
- W3098339701 hasLocation W30983397011 @default.
- W3098339701 hasLocation W30983397012 @default.
- W3098339701 hasOpenAccess W3098339701 @default.
- W3098339701 hasPrimaryLocation W30983397011 @default.
- W3098339701 hasRelatedWork W2731899572 @default.
- W3098339701 hasRelatedWork W2795209768 @default.