Matches in SemOpenAlex for { <https://semopenalex.org/work/W3098407580> ?p ?o ?g. }
- W3098407580 endingPage "113485" @default.
- W3098407580 startingPage "113485" @default.
- W3098407580 abstract "In the present study, an effective optimization framework of aerodynamic shape design is established based on the multi-fidelity deep neural network (MFDNN) model. The objective of the current work is to construct a high-accuracy multi-fidelity surrogate model correlating the configuration parameters of an aircraft and its aerodynamic performance by blending different fidelity information and adaptively learning their linear or nonlinear correlation without any prior assumption. In the optimization framework, the high-fidelity model using a CFD evaluation with fine grid and the low-fidelity model using the same CFD model with coarse grid are applied. Moreover, in each optimization iteration, the high-fidelity infilling strategy by adding the current optimal solution of surrogate model into the high-fidelity database is applied to improve the surrogate accuracy. The low-fidelity infilling strategy which can generate the solutions distributed uniformly in the whole design space is used to update the low-fidelity database for avoiding local optimum. Then, the proposed multi-fidelity optimization framework is validated by two standard synthetic benchmarks. Finally, it is applied to the high-dimensional aerodynamic shape optimization of a RAE2822 airfoil parameterized by 10 design variables and a DLR-F4 wing-body configuration parameterized by 30 design variables. The optimization results demonstrate that the proposed multi-fidelity optimization framework can remarkably improve optimization efficiency and outperform the single-fidelity method." @default.
- W3098407580 created "2020-11-23" @default.
- W3098407580 creator A5000604160 @default.
- W3098407580 creator A5038907917 @default.
- W3098407580 creator A5053220262 @default.
- W3098407580 creator A5079177230 @default.
- W3098407580 creator A5081198978 @default.
- W3098407580 date "2021-01-01" @default.
- W3098407580 modified "2023-10-16" @default.
- W3098407580 title "Multi-fidelity deep neural network surrogate model for aerodynamic shape optimization" @default.
- W3098407580 cites W1510052597 @default.
- W3098407580 cites W1541288193 @default.
- W3098407580 cites W1966546962 @default.
- W3098407580 cites W1969835837 @default.
- W3098407580 cites W1974961323 @default.
- W3098407580 cites W1976502092 @default.
- W3098407580 cites W1977046327 @default.
- W3098407580 cites W1979342956 @default.
- W3098407580 cites W1982886636 @default.
- W3098407580 cites W2008024864 @default.
- W3098407580 cites W2012798852 @default.
- W3098407580 cites W2024060531 @default.
- W3098407580 cites W2035332798 @default.
- W3098407580 cites W2054435353 @default.
- W3098407580 cites W2068353912 @default.
- W3098407580 cites W2071335613 @default.
- W3098407580 cites W2087594943 @default.
- W3098407580 cites W2093229042 @default.
- W3098407580 cites W2107941094 @default.
- W3098407580 cites W2112548197 @default.
- W3098407580 cites W2114863568 @default.
- W3098407580 cites W2543580944 @default.
- W3098407580 cites W2586938721 @default.
- W3098407580 cites W2595938122 @default.
- W3098407580 cites W2776809706 @default.
- W3098407580 cites W2780242952 @default.
- W3098407580 cites W2919958648 @default.
- W3098407580 cites W2947465899 @default.
- W3098407580 cites W2953573906 @default.
- W3098407580 cites W2999743509 @default.
- W3098407580 cites W3004624428 @default.
- W3098407580 doi "https://doi.org/10.1016/j.cma.2020.113485" @default.
- W3098407580 hasPublicationYear "2021" @default.
- W3098407580 type Work @default.
- W3098407580 sameAs 3098407580 @default.
- W3098407580 citedByCount "111" @default.
- W3098407580 countsByYear W30984075802020 @default.
- W3098407580 countsByYear W30984075802021 @default.
- W3098407580 countsByYear W30984075802022 @default.
- W3098407580 countsByYear W30984075802023 @default.
- W3098407580 crossrefType "journal-article" @default.
- W3098407580 hasAuthorship W3098407580A5000604160 @default.
- W3098407580 hasAuthorship W3098407580A5038907917 @default.
- W3098407580 hasAuthorship W3098407580A5053220262 @default.
- W3098407580 hasAuthorship W3098407580A5079177230 @default.
- W3098407580 hasAuthorship W3098407580A5081198978 @default.
- W3098407580 hasConcept C112124176 @default.
- W3098407580 hasConcept C11413529 @default.
- W3098407580 hasConcept C119857082 @default.
- W3098407580 hasConcept C126255220 @default.
- W3098407580 hasConcept C127413603 @default.
- W3098407580 hasConcept C131675550 @default.
- W3098407580 hasConcept C13393347 @default.
- W3098407580 hasConcept C137836250 @default.
- W3098407580 hasConcept C146978453 @default.
- W3098407580 hasConcept C154945302 @default.
- W3098407580 hasConcept C1633027 @default.
- W3098407580 hasConcept C187691185 @default.
- W3098407580 hasConcept C2524010 @default.
- W3098407580 hasConcept C2776459999 @default.
- W3098407580 hasConcept C33923547 @default.
- W3098407580 hasConcept C41008148 @default.
- W3098407580 hasConcept C50644808 @default.
- W3098407580 hasConcept C76155785 @default.
- W3098407580 hasConceptScore W3098407580C112124176 @default.
- W3098407580 hasConceptScore W3098407580C11413529 @default.
- W3098407580 hasConceptScore W3098407580C119857082 @default.
- W3098407580 hasConceptScore W3098407580C126255220 @default.
- W3098407580 hasConceptScore W3098407580C127413603 @default.
- W3098407580 hasConceptScore W3098407580C131675550 @default.
- W3098407580 hasConceptScore W3098407580C13393347 @default.
- W3098407580 hasConceptScore W3098407580C137836250 @default.
- W3098407580 hasConceptScore W3098407580C146978453 @default.
- W3098407580 hasConceptScore W3098407580C154945302 @default.
- W3098407580 hasConceptScore W3098407580C1633027 @default.
- W3098407580 hasConceptScore W3098407580C187691185 @default.
- W3098407580 hasConceptScore W3098407580C2524010 @default.
- W3098407580 hasConceptScore W3098407580C2776459999 @default.
- W3098407580 hasConceptScore W3098407580C33923547 @default.
- W3098407580 hasConceptScore W3098407580C41008148 @default.
- W3098407580 hasConceptScore W3098407580C50644808 @default.
- W3098407580 hasConceptScore W3098407580C76155785 @default.
- W3098407580 hasLocation W30984075801 @default.
- W3098407580 hasOpenAccess W3098407580 @default.
- W3098407580 hasPrimaryLocation W30984075801 @default.
- W3098407580 hasRelatedWork W1594991474 @default.
- W3098407580 hasRelatedWork W2186002321 @default.
- W3098407580 hasRelatedWork W2297936583 @default.