Matches in SemOpenAlex for { <https://semopenalex.org/work/W3098723073> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W3098723073 endingPage "87" @default.
- W3098723073 startingPage "87" @default.
- W3098723073 abstract "It is important to maintain every machine affecting the process of making sugar to ensure excellent product quality with minimal losses and to accelerate productivity and profitability targets. The centrifuges are widely used in industry today with some being very difficult and critical for surgery, and the collapse of the engine has the ability to cause expensive damage. One of these is the centrifugal machines, and they are expected to be efficient to produce high-quality sugar. Meanwhile, an efficient diagnostic tool to predict the correct time for centrifugal repair is vibration signal analysis namely by attaching the accelerometer sensor to the location of the centrifugal bearing to produce vibration data that is ready to be analyzed. Still, the process requires sufficient insight and experience. The manual method usually used is complicated and requires a lot of time to obtain results of a centrifugal diagnosis. Therefore, this study was conducted to design an intelligent system to diagnose centrifugal vibrations using Artificial Neural Networks (ANN). The situation is involved in applying and training the concept of vibration analysis from spectrum data to ANN to produce diagnostic results according to the spectrum diagnosis reference. The results obtained were quite good with the largest cross-entropy value of 10.67 having 0% error value with the largest Mean Square Error value being 0.0023 while the smallest regression was 0.993. The test conducted on nine new spectrums produced eight true predictions and one false. The system can provide fairly accurate results in a short time. Classification quality improvement can be made by adding training data." @default.
- W3098723073 created "2020-11-23" @default.
- W3098723073 creator A5029511454 @default.
- W3098723073 creator A5075903315 @default.
- W3098723073 creator A5079314138 @default.
- W3098723073 creator A5081391873 @default.
- W3098723073 date "2020-11-11" @default.
- W3098723073 modified "2023-10-16" @default.
- W3098723073 title "THE IMPLEMENTATION OF ARTIFICIAL NEURAL NETWORKS IN DESIGNING INTELLIGENT DIAGNOSIS SYSTEMS FOR CENTRIFUGAL MACHINES USING VIBRATION SIGNAL" @default.
- W3098723073 doi "https://doi.org/10.22441/sinergi.2021.1.012" @default.
- W3098723073 hasPublicationYear "2020" @default.
- W3098723073 type Work @default.
- W3098723073 sameAs 3098723073 @default.
- W3098723073 citedByCount "3" @default.
- W3098723073 countsByYear W30987230732021 @default.
- W3098723073 countsByYear W30987230732023 @default.
- W3098723073 crossrefType "journal-article" @default.
- W3098723073 hasAuthorship W3098723073A5029511454 @default.
- W3098723073 hasAuthorship W3098723073A5075903315 @default.
- W3098723073 hasAuthorship W3098723073A5079314138 @default.
- W3098723073 hasAuthorship W3098723073A5081391873 @default.
- W3098723073 hasBestOaLocation W30987230731 @default.
- W3098723073 hasConcept C10138342 @default.
- W3098723073 hasConcept C106301342 @default.
- W3098723073 hasConcept C111919701 @default.
- W3098723073 hasConcept C121332964 @default.
- W3098723073 hasConcept C127413603 @default.
- W3098723073 hasConcept C129361004 @default.
- W3098723073 hasConcept C153180895 @default.
- W3098723073 hasConcept C154945302 @default.
- W3098723073 hasConcept C162324750 @default.
- W3098723073 hasConcept C198394728 @default.
- W3098723073 hasConcept C24890656 @default.
- W3098723073 hasConcept C41008148 @default.
- W3098723073 hasConcept C50644808 @default.
- W3098723073 hasConcept C62520636 @default.
- W3098723073 hasConcept C89805583 @default.
- W3098723073 hasConcept C98045186 @default.
- W3098723073 hasConceptScore W3098723073C10138342 @default.
- W3098723073 hasConceptScore W3098723073C106301342 @default.
- W3098723073 hasConceptScore W3098723073C111919701 @default.
- W3098723073 hasConceptScore W3098723073C121332964 @default.
- W3098723073 hasConceptScore W3098723073C127413603 @default.
- W3098723073 hasConceptScore W3098723073C129361004 @default.
- W3098723073 hasConceptScore W3098723073C153180895 @default.
- W3098723073 hasConceptScore W3098723073C154945302 @default.
- W3098723073 hasConceptScore W3098723073C162324750 @default.
- W3098723073 hasConceptScore W3098723073C198394728 @default.
- W3098723073 hasConceptScore W3098723073C24890656 @default.
- W3098723073 hasConceptScore W3098723073C41008148 @default.
- W3098723073 hasConceptScore W3098723073C50644808 @default.
- W3098723073 hasConceptScore W3098723073C62520636 @default.
- W3098723073 hasConceptScore W3098723073C89805583 @default.
- W3098723073 hasConceptScore W3098723073C98045186 @default.
- W3098723073 hasIssue "1" @default.
- W3098723073 hasLocation W30987230731 @default.
- W3098723073 hasOpenAccess W3098723073 @default.
- W3098723073 hasPrimaryLocation W30987230731 @default.
- W3098723073 hasRelatedWork W1968230110 @default.
- W3098723073 hasRelatedWork W2106938300 @default.
- W3098723073 hasRelatedWork W2152460034 @default.
- W3098723073 hasRelatedWork W2170505533 @default.
- W3098723073 hasRelatedWork W2254002426 @default.
- W3098723073 hasRelatedWork W2897410528 @default.
- W3098723073 hasRelatedWork W2899084033 @default.
- W3098723073 hasRelatedWork W2948131761 @default.
- W3098723073 hasRelatedWork W4311788283 @default.
- W3098723073 hasRelatedWork W2104051898 @default.
- W3098723073 hasVolume "25" @default.
- W3098723073 isParatext "false" @default.
- W3098723073 isRetracted "false" @default.
- W3098723073 magId "3098723073" @default.
- W3098723073 workType "article" @default.