Matches in SemOpenAlex for { <https://semopenalex.org/work/W3098819468> ?p ?o ?g. }
Showing items 1 to 83 of
83
with 100 items per page.
- W3098819468 abstract "The gas turbine is the most important part of the combined cycle power plant that generates the total electric power from the fuel to provide it to the houses, schools, and other facilities in the country. Thus, it is important to predict the power to increase and maximize profit. This paper compares four machine learning algorithms which are Multiple linear Regression, Multilayer perceptron, K-Nearest Neighbors, and Random Forest Algorithm. The dataset consists of 9,568 observations and four inputs which are ambient temperature, ambient pressure, relative humidity, and exhaust vacuum that will be used to train the prediction of the total electric power consumption which is the output. The best result was shown by using the Random Forest Algorithm with the mean absolute error of 2.3013 and root mean square error with 3.3061." @default.
- W3098819468 created "2020-11-23" @default.
- W3098819468 creator A5002628427 @default.
- W3098819468 creator A5051687507 @default.
- W3098819468 creator A5064705303 @default.
- W3098819468 creator A5068111858 @default.
- W3098819468 creator A5069884464 @default.
- W3098819468 date "2020-11-03" @default.
- W3098819468 modified "2023-10-14" @default.
- W3098819468 title "Predicting the power of a combined cycle power plant using machine learning methods" @default.
- W3098819468 cites W1761970801 @default.
- W3098819468 cites W1986036124 @default.
- W3098819468 cites W1992377888 @default.
- W3098819468 cites W2007644663 @default.
- W3098819468 cites W2009151039 @default.
- W3098819468 cites W2040953322 @default.
- W3098819468 cites W2064769840 @default.
- W3098819468 cites W2080272662 @default.
- W3098819468 cites W2171830166 @default.
- W3098819468 cites W2575574673 @default.
- W3098819468 cites W2754569179 @default.
- W3098819468 cites W2772402907 @default.
- W3098819468 cites W2879437234 @default.
- W3098819468 cites W2905217250 @default.
- W3098819468 cites W2917572534 @default.
- W3098819468 cites W3101647584 @default.
- W3098819468 doi "https://doi.org/10.1109/ccci49893.2020.9256742" @default.
- W3098819468 hasPublicationYear "2020" @default.
- W3098819468 type Work @default.
- W3098819468 sameAs 3098819468 @default.
- W3098819468 citedByCount "5" @default.
- W3098819468 countsByYear W30988194682021 @default.
- W3098819468 countsByYear W30988194682022 @default.
- W3098819468 countsByYear W30988194682023 @default.
- W3098819468 crossrefType "proceedings-article" @default.
- W3098819468 hasAuthorship W3098819468A5002628427 @default.
- W3098819468 hasAuthorship W3098819468A5051687507 @default.
- W3098819468 hasAuthorship W3098819468A5064705303 @default.
- W3098819468 hasAuthorship W3098819468A5068111858 @default.
- W3098819468 hasAuthorship W3098819468A5069884464 @default.
- W3098819468 hasConcept C105795698 @default.
- W3098819468 hasConcept C119857082 @default.
- W3098819468 hasConcept C121332964 @default.
- W3098819468 hasConcept C139945424 @default.
- W3098819468 hasConcept C150217764 @default.
- W3098819468 hasConcept C154945302 @default.
- W3098819468 hasConcept C163258240 @default.
- W3098819468 hasConcept C169258074 @default.
- W3098819468 hasConcept C33923547 @default.
- W3098819468 hasConcept C40293303 @default.
- W3098819468 hasConcept C41008148 @default.
- W3098819468 hasConcept C48921125 @default.
- W3098819468 hasConcept C62520636 @default.
- W3098819468 hasConceptScore W3098819468C105795698 @default.
- W3098819468 hasConceptScore W3098819468C119857082 @default.
- W3098819468 hasConceptScore W3098819468C121332964 @default.
- W3098819468 hasConceptScore W3098819468C139945424 @default.
- W3098819468 hasConceptScore W3098819468C150217764 @default.
- W3098819468 hasConceptScore W3098819468C154945302 @default.
- W3098819468 hasConceptScore W3098819468C163258240 @default.
- W3098819468 hasConceptScore W3098819468C169258074 @default.
- W3098819468 hasConceptScore W3098819468C33923547 @default.
- W3098819468 hasConceptScore W3098819468C40293303 @default.
- W3098819468 hasConceptScore W3098819468C41008148 @default.
- W3098819468 hasConceptScore W3098819468C48921125 @default.
- W3098819468 hasConceptScore W3098819468C62520636 @default.
- W3098819468 hasLocation W30988194681 @default.
- W3098819468 hasOpenAccess W3098819468 @default.
- W3098819468 hasPrimaryLocation W30988194681 @default.
- W3098819468 hasRelatedWork W2907938777 @default.
- W3098819468 hasRelatedWork W3015222799 @default.
- W3098819468 hasRelatedWork W4281799626 @default.
- W3098819468 hasRelatedWork W4285733885 @default.
- W3098819468 hasRelatedWork W4310475761 @default.
- W3098819468 hasRelatedWork W4321377293 @default.
- W3098819468 hasRelatedWork W4323256886 @default.
- W3098819468 hasRelatedWork W4324137334 @default.
- W3098819468 hasRelatedWork W4375953125 @default.
- W3098819468 hasRelatedWork W4377698816 @default.
- W3098819468 isParatext "false" @default.
- W3098819468 isRetracted "false" @default.
- W3098819468 magId "3098819468" @default.
- W3098819468 workType "article" @default.