Matches in SemOpenAlex for { <https://semopenalex.org/work/W3098891640> ?p ?o ?g. }
- W3098891640 endingPage "1609" @default.
- W3098891640 startingPage "1583" @default.
- W3098891640 abstract "A collection of robust Mahalanobis distances for multivariate outlier detection is proposed, based on the notion of shrinkage. Robust intensity and scaling factors are optimally estimated to define the shrinkage. Some properties are investigated, such as affine equivariance and breakdown value. The performance of the proposal is illustrated through the comparison to other techniques from the literature, in a simulation study and with a real dataset. The behavior when the underlying distribution is heavy-tailed or skewed, shows the appropriateness of the method when we deviate from the common assumption of normality. The resulting high correct detection rates and low false detection rates in the vast majority of cases, as well as the significantly smaller computation time shows the advantages of our proposal." @default.
- W3098891640 created "2020-11-23" @default.
- W3098891640 creator A5042809634 @default.
- W3098891640 creator A5083995450 @default.
- W3098891640 creator A5090172801 @default.
- W3098891640 date "2019-11-20" @default.
- W3098891640 modified "2023-10-12" @default.
- W3098891640 title "Multivariate outlier detection based on a robust Mahalanobis distance with shrinkage estimators" @default.
- W3098891640 cites W1501401766 @default.
- W3098891640 cites W1510731595 @default.
- W3098891640 cites W1584308190 @default.
- W3098891640 cites W1598916279 @default.
- W3098891640 cites W172260869 @default.
- W3098891640 cites W1965928820 @default.
- W3098891640 cites W1971460477 @default.
- W3098891640 cites W1974771043 @default.
- W3098891640 cites W1975434585 @default.
- W3098891640 cites W1976160686 @default.
- W3098891640 cites W1979573625 @default.
- W3098891640 cites W1984050705 @default.
- W3098891640 cites W1986008049 @default.
- W3098891640 cites W1987333632 @default.
- W3098891640 cites W1989638282 @default.
- W3098891640 cites W2000016398 @default.
- W3098891640 cites W2000724964 @default.
- W3098891640 cites W2017113750 @default.
- W3098891640 cites W2028080004 @default.
- W3098891640 cites W2029745943 @default.
- W3098891640 cites W2031709328 @default.
- W3098891640 cites W2040324983 @default.
- W3098891640 cites W2046936114 @default.
- W3098891640 cites W2048699556 @default.
- W3098891640 cites W2049454545 @default.
- W3098891640 cites W2052740976 @default.
- W3098891640 cites W205891469 @default.
- W3098891640 cites W2059659103 @default.
- W3098891640 cites W2061747538 @default.
- W3098891640 cites W2062125287 @default.
- W3098891640 cites W2063717353 @default.
- W3098891640 cites W2066592876 @default.
- W3098891640 cites W2068302187 @default.
- W3098891640 cites W2082518797 @default.
- W3098891640 cites W2086465016 @default.
- W3098891640 cites W2088272457 @default.
- W3098891640 cites W2096545952 @default.
- W3098891640 cites W2103086259 @default.
- W3098891640 cites W2115972246 @default.
- W3098891640 cites W2125835628 @default.
- W3098891640 cites W2136179595 @default.
- W3098891640 cites W2146225536 @default.
- W3098891640 cites W2165408259 @default.
- W3098891640 cites W2168812513 @default.
- W3098891640 cites W2248058375 @default.
- W3098891640 cites W2414954445 @default.
- W3098891640 cites W2464211785 @default.
- W3098891640 cites W2482053526 @default.
- W3098891640 cites W2498631646 @default.
- W3098891640 cites W2890271933 @default.
- W3098891640 cites W2901680230 @default.
- W3098891640 cites W3100039232 @default.
- W3098891640 cites W3123065893 @default.
- W3098891640 cites W4243563432 @default.
- W3098891640 cites W4247180868 @default.
- W3098891640 cites W4248535147 @default.
- W3098891640 cites W4250766106 @default.
- W3098891640 cites W4253133244 @default.
- W3098891640 cites W4256209342 @default.
- W3098891640 cites W47198768 @default.
- W3098891640 doi "https://doi.org/10.1007/s00362-019-01148-1" @default.
- W3098891640 hasPublicationYear "2019" @default.
- W3098891640 type Work @default.
- W3098891640 sameAs 3098891640 @default.
- W3098891640 citedByCount "35" @default.
- W3098891640 countsByYear W30988916402019 @default.
- W3098891640 countsByYear W30988916402020 @default.
- W3098891640 countsByYear W30988916402021 @default.
- W3098891640 countsByYear W30988916402022 @default.
- W3098891640 countsByYear W30988916402023 @default.
- W3098891640 crossrefType "journal-article" @default.
- W3098891640 hasAuthorship W3098891640A5042809634 @default.
- W3098891640 hasAuthorship W3098891640A5083995450 @default.
- W3098891640 hasAuthorship W3098891640A5090172801 @default.
- W3098891640 hasBestOaLocation W30988916401 @default.
- W3098891640 hasConcept C105795698 @default.
- W3098891640 hasConcept C153180895 @default.
- W3098891640 hasConcept C154945302 @default.
- W3098891640 hasConcept C161584116 @default.
- W3098891640 hasConcept C177384507 @default.
- W3098891640 hasConcept C180145272 @default.
- W3098891640 hasConcept C185429906 @default.
- W3098891640 hasConcept C1921717 @default.
- W3098891640 hasConcept C202444582 @default.
- W3098891640 hasConcept C2524010 @default.
- W3098891640 hasConcept C33923547 @default.
- W3098891640 hasConcept C41008148 @default.
- W3098891640 hasConcept C739882 @default.
- W3098891640 hasConcept C79337645 @default.
- W3098891640 hasConcept C92757383 @default.