Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099071781> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W3099071781 abstract "Abstract Recent advances in deep learning, particularly unsupervised approaches, have shown promise for furthering our biological knowledge through their application to gene expression datasets, though applications to epigenomic data are lacking. Here, we employ an unsupervised deep learning framework with variational autoencoders (VAEs) to learn latent representations of the DNA methylation landscape from three independent breast tumor datasets. Through interrogation of methylation-based learned latent dimension activation values, we demonstrate the feasibility of VAEs to track representative differential methylation patterns among clinical subtypes of tumors. CpGs whose methylation was most correlated VAE latent dimension activation values were significantly enriched for CpG sparse regulatory regions of the genome including enhancer regions. In addition, through comparison with LASSO, we show the utility of the VAE approach for revealing novel information about CpG DNA methylation patterns in breast cancer." @default.
- W3099071781 created "2020-11-23" @default.
- W3099071781 creator A5007096218 @default.
- W3099071781 creator A5069181413 @default.
- W3099071781 creator A5070751977 @default.
- W3099071781 creator A5081393377 @default.
- W3099071781 date "2018-10-02" @default.
- W3099071781 modified "2023-09-27" @default.
- W3099071781 title "Unsupervised deep learning with variational autoencoders applied to breast tumor genome-wide DNA methylation data with biologic feature extraction" @default.
- W3099071781 cites W1498866990 @default.
- W3099071781 cites W1975878616 @default.
- W3099071781 cites W1980861196 @default.
- W3099071781 cites W2015347426 @default.
- W3099071781 cites W2015735594 @default.
- W3099071781 cites W2050112556 @default.
- W3099071781 cites W2096283457 @default.
- W3099071781 cites W2097416376 @default.
- W3099071781 cites W2101870168 @default.
- W3099071781 cites W2161224111 @default.
- W3099071781 cites W2247766769 @default.
- W3099071781 cites W2259938310 @default.
- W3099071781 cites W2261527505 @default.
- W3099071781 cites W2291124025 @default.
- W3099071781 cites W2292247613 @default.
- W3099071781 cites W2303301650 @default.
- W3099071781 cites W2397757171 @default.
- W3099071781 cites W2567534979 @default.
- W3099071781 cites W2765153169 @default.
- W3099071781 cites W2766526974 @default.
- W3099071781 cites W2774323335 @default.
- W3099071781 cites W2785961807 @default.
- W3099071781 cites W2790179710 @default.
- W3099071781 cites W2795164082 @default.
- W3099071781 cites W2952959400 @default.
- W3099071781 doi "https://doi.org/10.1101/433763" @default.
- W3099071781 hasPublicationYear "2018" @default.
- W3099071781 type Work @default.
- W3099071781 sameAs 3099071781 @default.
- W3099071781 citedByCount "23" @default.
- W3099071781 countsByYear W30990717812019 @default.
- W3099071781 countsByYear W30990717812020 @default.
- W3099071781 countsByYear W30990717812021 @default.
- W3099071781 countsByYear W30990717812022 @default.
- W3099071781 countsByYear W30990717812023 @default.
- W3099071781 crossrefType "posted-content" @default.
- W3099071781 hasAuthorship W3099071781A5007096218 @default.
- W3099071781 hasAuthorship W3099071781A5069181413 @default.
- W3099071781 hasAuthorship W3099071781A5070751977 @default.
- W3099071781 hasAuthorship W3099071781A5081393377 @default.
- W3099071781 hasBestOaLocation W30990717811 @default.
- W3099071781 hasConcept C104317684 @default.
- W3099071781 hasConcept C108583219 @default.
- W3099071781 hasConcept C121608353 @default.
- W3099071781 hasConcept C121912465 @default.
- W3099071781 hasConcept C140173407 @default.
- W3099071781 hasConcept C150194340 @default.
- W3099071781 hasConcept C153180895 @default.
- W3099071781 hasConcept C154945302 @default.
- W3099071781 hasConcept C190727270 @default.
- W3099071781 hasConcept C33288867 @default.
- W3099071781 hasConcept C41008148 @default.
- W3099071781 hasConcept C530470458 @default.
- W3099071781 hasConcept C54355233 @default.
- W3099071781 hasConcept C70721500 @default.
- W3099071781 hasConcept C86803240 @default.
- W3099071781 hasConceptScore W3099071781C104317684 @default.
- W3099071781 hasConceptScore W3099071781C108583219 @default.
- W3099071781 hasConceptScore W3099071781C121608353 @default.
- W3099071781 hasConceptScore W3099071781C121912465 @default.
- W3099071781 hasConceptScore W3099071781C140173407 @default.
- W3099071781 hasConceptScore W3099071781C150194340 @default.
- W3099071781 hasConceptScore W3099071781C153180895 @default.
- W3099071781 hasConceptScore W3099071781C154945302 @default.
- W3099071781 hasConceptScore W3099071781C190727270 @default.
- W3099071781 hasConceptScore W3099071781C33288867 @default.
- W3099071781 hasConceptScore W3099071781C41008148 @default.
- W3099071781 hasConceptScore W3099071781C530470458 @default.
- W3099071781 hasConceptScore W3099071781C54355233 @default.
- W3099071781 hasConceptScore W3099071781C70721500 @default.
- W3099071781 hasConceptScore W3099071781C86803240 @default.
- W3099071781 hasLocation W30990717811 @default.
- W3099071781 hasOpenAccess W3099071781 @default.
- W3099071781 hasPrimaryLocation W30990717811 @default.
- W3099071781 hasRelatedWork W1985366666 @default.
- W3099071781 hasRelatedWork W2049583682 @default.
- W3099071781 hasRelatedWork W2077359776 @default.
- W3099071781 hasRelatedWork W2105272426 @default.
- W3099071781 hasRelatedWork W2144727750 @default.
- W3099071781 hasRelatedWork W2150847421 @default.
- W3099071781 hasRelatedWork W2327450572 @default.
- W3099071781 hasRelatedWork W2594409179 @default.
- W3099071781 hasRelatedWork W4283009135 @default.
- W3099071781 hasRelatedWork W4382654476 @default.
- W3099071781 isParatext "false" @default.
- W3099071781 isRetracted "false" @default.
- W3099071781 magId "3099071781" @default.
- W3099071781 workType "article" @default.