Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099165740> ?p ?o ?g. }
- W3099165740 endingPage "1343" @default.
- W3099165740 startingPage "1333" @default.
- W3099165740 abstract "Objective: We exploit altered patterns in brain functional connectivity as features for automatic discriminative analysis of neuropsychiatric patients. Deep learning methods have been introduced to functional network classification only very recently for fMRI, and the proposed architectures essentially focused on a single type of connectivity measure. Methods: We propose a deep convolutional neural network (CNN) framework for classification of electroencephalogram (EEG)-derived brain connectome in schizophrenia (SZ). To capture complementary aspects of disrupted connectivity in SZ, we explore combination of various connectivity features consisting of time and frequency-domain metrics of effective connectivity based on vector autoregressive model and partial directed coherence, and complex network measures of network topology. We design a novel multi-domain connectome CNN (MDC-CNN) based on a parallel ensemble of 1D and 2D CNNs to integrate the features from various domains and dimensions using different fusion strategies. We also consider an extension to dynamic brain connectivity using the recurrent neural networks. Results: Hierarchical latent representations learned by the multiple convolutional layers from EEG connectivity reveals apparent group differences between SZ and healthy controls (HC). Results on a large resting-state EEG dataset show that the proposed CNNs significantly outperform traditional support vector machine classifier. The MDC-CNN with combined connectivity features further improves performance over single-domain CNNs using individual features, achieving remarkable accuracy of 91.69% with a decision-level fusion. Conclusion: The proposed MDC-CNN by integrating information from diverse brain connectivity descriptors is able to accurately discriminate SZ from HC. Significance: The new framework is potentially useful for developing diagnostic tools for SZ and other disorders." @default.
- W3099165740 created "2020-11-23" @default.
- W3099165740 creator A5005417648 @default.
- W3099165740 creator A5022587472 @default.
- W3099165740 creator A5046157434 @default.
- W3099165740 creator A5075762872 @default.
- W3099165740 creator A5088514441 @default.
- W3099165740 date "2020-05-01" @default.
- W3099165740 modified "2023-10-18" @default.
- W3099165740 title "A Multi-Domain Connectome Convolutional Neural Network for Identifying Schizophrenia From EEG Connectivity Patterns" @default.
- W3099165740 cites W1457602677 @default.
- W3099165740 cites W1510052597 @default.
- W3099165740 cites W1972498024 @default.
- W3099165740 cites W1976623182 @default.
- W3099165740 cites W1985994929 @default.
- W3099165740 cites W1996779446 @default.
- W3099165740 cites W2002952717 @default.
- W3099165740 cites W2011099767 @default.
- W3099165740 cites W2014668809 @default.
- W3099165740 cites W2024256198 @default.
- W3099165740 cites W2053533857 @default.
- W3099165740 cites W2056172758 @default.
- W3099165740 cites W2058711140 @default.
- W3099165740 cites W2064598115 @default.
- W3099165740 cites W2064675550 @default.
- W3099165740 cites W2068181401 @default.
- W3099165740 cites W2072122428 @default.
- W3099165740 cites W2076805502 @default.
- W3099165740 cites W2092068573 @default.
- W3099165740 cites W2093561300 @default.
- W3099165740 cites W2104886463 @default.
- W3099165740 cites W2111406541 @default.
- W3099165740 cites W2127070446 @default.
- W3099165740 cites W2136390311 @default.
- W3099165740 cites W2159242554 @default.
- W3099165740 cites W2165902261 @default.
- W3099165740 cites W2167822639 @default.
- W3099165740 cites W2431015478 @default.
- W3099165740 cites W2480195998 @default.
- W3099165740 cites W2526511911 @default.
- W3099165740 cites W2546687266 @default.
- W3099165740 cites W2594868858 @default.
- W3099165740 cites W2618530766 @default.
- W3099165740 cites W2625749968 @default.
- W3099165740 cites W2746329898 @default.
- W3099165740 cites W2752558629 @default.
- W3099165740 cites W2774646741 @default.
- W3099165740 cites W2784272752 @default.
- W3099165740 cites W2793528521 @default.
- W3099165740 cites W2803731655 @default.
- W3099165740 cites W2806270588 @default.
- W3099165740 cites W2946366192 @default.
- W3099165740 cites W2951354430 @default.
- W3099165740 cites W2964266449 @default.
- W3099165740 doi "https://doi.org/10.1109/jbhi.2019.2941222" @default.
- W3099165740 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31536026" @default.
- W3099165740 hasPublicationYear "2020" @default.
- W3099165740 type Work @default.
- W3099165740 sameAs 3099165740 @default.
- W3099165740 citedByCount "86" @default.
- W3099165740 countsByYear W30991657402020 @default.
- W3099165740 countsByYear W30991657402021 @default.
- W3099165740 countsByYear W30991657402022 @default.
- W3099165740 countsByYear W30991657402023 @default.
- W3099165740 crossrefType "journal-article" @default.
- W3099165740 hasAuthorship W3099165740A5005417648 @default.
- W3099165740 hasAuthorship W3099165740A5022587472 @default.
- W3099165740 hasAuthorship W3099165740A5046157434 @default.
- W3099165740 hasAuthorship W3099165740A5075762872 @default.
- W3099165740 hasAuthorship W3099165740A5088514441 @default.
- W3099165740 hasBestOaLocation W30991657402 @default.
- W3099165740 hasConcept C119857082 @default.
- W3099165740 hasConcept C12267149 @default.
- W3099165740 hasConcept C153180895 @default.
- W3099165740 hasConcept C154945302 @default.
- W3099165740 hasConcept C169760540 @default.
- W3099165740 hasConcept C3018011982 @default.
- W3099165740 hasConcept C41008148 @default.
- W3099165740 hasConcept C45715564 @default.
- W3099165740 hasConcept C522805319 @default.
- W3099165740 hasConcept C81363708 @default.
- W3099165740 hasConcept C86803240 @default.
- W3099165740 hasConcept C97820695 @default.
- W3099165740 hasConcept C97931131 @default.
- W3099165740 hasConceptScore W3099165740C119857082 @default.
- W3099165740 hasConceptScore W3099165740C12267149 @default.
- W3099165740 hasConceptScore W3099165740C153180895 @default.
- W3099165740 hasConceptScore W3099165740C154945302 @default.
- W3099165740 hasConceptScore W3099165740C169760540 @default.
- W3099165740 hasConceptScore W3099165740C3018011982 @default.
- W3099165740 hasConceptScore W3099165740C41008148 @default.
- W3099165740 hasConceptScore W3099165740C45715564 @default.
- W3099165740 hasConceptScore W3099165740C522805319 @default.
- W3099165740 hasConceptScore W3099165740C81363708 @default.
- W3099165740 hasConceptScore W3099165740C86803240 @default.
- W3099165740 hasConceptScore W3099165740C97820695 @default.
- W3099165740 hasConceptScore W3099165740C97931131 @default.
- W3099165740 hasFunder F4320321709 @default.