Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099202295> ?p ?o ?g. }
- W3099202295 endingPage "1779" @default.
- W3099202295 startingPage "1779" @default.
- W3099202295 abstract "To compare how different analytical methods explain crop yields from a long-term field experiment (LTFE), we analyzed the grain yield of winter wheat (WW) under different fertilizer applications in Müncheberg, Germany. An analysis of variance (ANOVA), linear mixed-effects model (LMM), and MP5 regression tree model were used to evaluate the grain yield response. All the methods identified fertilizer application and environmental factors as the main variables that explained 80% of the variance in grain yields. Mineral nitrogen fertilizer (NF) application was the major factor that influenced the grain yield in all methods. Farmyard manure slightly influenced the grain yield with no NF application in the ANOVA and M5P regression tree. While sources of environmental factors were unmeasured in the ANOVA test, they were quantified in detail in the LMM and M5P model. The LMM and M5P model identified the cumulative number of freezing days in December as the main climate-based determinant of the grain yield variation. Additionally, the temperature in October, the cumulative number of freezing days in February, the yield of the preceding crop, and the total nitrogen in the soil were determinants of the grain yield in both models. Apart from the common determinants that appeared in both models, the LMM additionally showed precipitation in June and the cumulative number of days in July with temperatures above 30 °C, while the M5P model showed soil organic carbon as an influencing factor of the grain yield. The ANOVA results provide only the main factors affecting the WW yield. The LMM had a better predictive performance compared to the M5P, with smaller root mean square and mean absolute errors. However, they were richer regressors than the ANOVA. The M5P model presented an intuitive visualization of important variables and their critical thresholds, and revealed other variables that were not captured by the LMM model. Hence, the use of different methods can strengthen the statement of the analysis, and thus, the co-use of the LMM and M5P model should be considered, especially in large databases involving multiple variables." @default.
- W3099202295 created "2020-11-23" @default.
- W3099202295 creator A5002519186 @default.
- W3099202295 creator A5019846445 @default.
- W3099202295 creator A5050002779 @default.
- W3099202295 creator A5061502188 @default.
- W3099202295 date "2020-11-13" @default.
- W3099202295 modified "2023-10-06" @default.
- W3099202295 title "Statistical Analysis versus the M5P Machine Learning Algorithm to Analyze the Yield of Winter Wheat in a Long-Term Fertilizer Experiment" @default.
- W3099202295 cites W114370962 @default.
- W3099202295 cites W1219409605 @default.
- W3099202295 cites W1607241334 @default.
- W3099202295 cites W1630534919 @default.
- W3099202295 cites W1795468129 @default.
- W3099202295 cites W1816503789 @default.
- W3099202295 cites W1822164045 @default.
- W3099202295 cites W1903041551 @default.
- W3099202295 cites W1951724000 @default.
- W3099202295 cites W1963519462 @default.
- W3099202295 cites W1977541488 @default.
- W3099202295 cites W1982656467 @default.
- W3099202295 cites W1982952862 @default.
- W3099202295 cites W1992877511 @default.
- W3099202295 cites W2002649804 @default.
- W3099202295 cites W2019232777 @default.
- W3099202295 cites W2025827168 @default.
- W3099202295 cites W2029711018 @default.
- W3099202295 cites W2035884137 @default.
- W3099202295 cites W2037250653 @default.
- W3099202295 cites W2038421764 @default.
- W3099202295 cites W2056231169 @default.
- W3099202295 cites W2065614929 @default.
- W3099202295 cites W2081584772 @default.
- W3099202295 cites W2097804244 @default.
- W3099202295 cites W2099877015 @default.
- W3099202295 cites W2102397359 @default.
- W3099202295 cites W2128084896 @default.
- W3099202295 cites W2140515847 @default.
- W3099202295 cites W2143047610 @default.
- W3099202295 cites W2155942867 @default.
- W3099202295 cites W2155988679 @default.
- W3099202295 cites W2173259912 @default.
- W3099202295 cites W2329122923 @default.
- W3099202295 cites W238246311 @default.
- W3099202295 cites W2407499168 @default.
- W3099202295 cites W2429135272 @default.
- W3099202295 cites W2507215622 @default.
- W3099202295 cites W2509594112 @default.
- W3099202295 cites W2509773051 @default.
- W3099202295 cites W2595009104 @default.
- W3099202295 cites W2757882997 @default.
- W3099202295 cites W2792919287 @default.
- W3099202295 cites W2805135720 @default.
- W3099202295 cites W2805142011 @default.
- W3099202295 cites W2807198630 @default.
- W3099202295 cites W2889543191 @default.
- W3099202295 cites W2890280994 @default.
- W3099202295 cites W2899644232 @default.
- W3099202295 cites W2911964244 @default.
- W3099202295 cites W2956141415 @default.
- W3099202295 cites W2995084063 @default.
- W3099202295 cites W3023818715 @default.
- W3099202295 cites W3036812576 @default.
- W3099202295 cites W318293062 @default.
- W3099202295 doi "https://doi.org/10.3390/agronomy10111779" @default.
- W3099202295 hasPublicationYear "2020" @default.
- W3099202295 type Work @default.
- W3099202295 sameAs 3099202295 @default.
- W3099202295 citedByCount "3" @default.
- W3099202295 countsByYear W30992022952023 @default.
- W3099202295 crossrefType "journal-article" @default.
- W3099202295 hasAuthorship W3099202295A5002519186 @default.
- W3099202295 hasAuthorship W3099202295A5019846445 @default.
- W3099202295 hasAuthorship W3099202295A5050002779 @default.
- W3099202295 hasAuthorship W3099202295A5061502188 @default.
- W3099202295 hasBestOaLocation W30992022951 @default.
- W3099202295 hasConcept C105795698 @default.
- W3099202295 hasConcept C126343540 @default.
- W3099202295 hasConcept C134121241 @default.
- W3099202295 hasConcept C152877465 @default.
- W3099202295 hasConcept C191897082 @default.
- W3099202295 hasConcept C192562407 @default.
- W3099202295 hasConcept C2780560099 @default.
- W3099202295 hasConcept C2992211155 @default.
- W3099202295 hasConcept C33923547 @default.
- W3099202295 hasConcept C38304854 @default.
- W3099202295 hasConcept C48921125 @default.
- W3099202295 hasConcept C6557445 @default.
- W3099202295 hasConcept C855514 @default.
- W3099202295 hasConcept C86803240 @default.
- W3099202295 hasConcept C99476002 @default.
- W3099202295 hasConceptScore W3099202295C105795698 @default.
- W3099202295 hasConceptScore W3099202295C126343540 @default.
- W3099202295 hasConceptScore W3099202295C134121241 @default.
- W3099202295 hasConceptScore W3099202295C152877465 @default.
- W3099202295 hasConceptScore W3099202295C191897082 @default.
- W3099202295 hasConceptScore W3099202295C192562407 @default.
- W3099202295 hasConceptScore W3099202295C2780560099 @default.