Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099214538> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W3099214538 abstract "<p>Modelling of rainfall-runoff phenomenon continues to be a challenging task at hand of hydrologists as the underlying processes are highly nonlinear, dynamic and interdependent. Numerous modelling strategies like empirical, conceptual, physically based, data driven, are used to develop rainfall-runoff models as no model type can be considered to be universally pertinent for a wide range of problems. Latest literature review emphasizes that the crucial step of hydrological model selection is often subjective and is based on legacy. As the research outcome depends on model choice, there is a necessity to automate the process of model evolution, evaluation and selection based on research objectives, temporal and spatial characteristics of available data and catchment properties. Therefore, this study proposes a novel automated model building algorithm relying on machine learning technique Genetic Programming (GP).</p><p>State of art GP applications in rainfall-runoff modelling as yet used the algorithm as a short-term forecasting tool which produces an expected future time series very much alike to neural networks application. Such simplistic applications of data driven black-box machine learning techniques may lead to development of accurate yet meaningless models which do not satisfy basic hydrological insights and may have severe difficulties with interpretation. Concurrently, it should be admitted that there is a vast amount of knowledge and understanding of physical processes that should not just be thrown away. Thus, we strongly believe that the most suitable way forward is to couple the already existing body of knowledge with machine learning techniques in a guided manner to enhance the meaningfulness and interpretability of the induced models.</p><p>In this suggested algorithm the domain knowledge is introduced through the incorporation of process knowledge by adding model building blocks from prevailing rainfall-runoff modelling frameworks into the GP function set. Presently, the function set library consists with Sugawara TANK model functions, generic components of two flexible rainfall-runoff modelling frameworks (FUSE and SUPERFLEX) and model equations of 46 existing hydrological models (MARRMoT). Nevertheless, perhaps more importantly, the algorithm is readily integratable with any other internal coherence building blocks. This approach contrasts from rest of machine learning applications in rainfall-runoff modelling as it not only produces the runoff predictions but develops a physically meaningful hydrological model which helps the hydrologist to better understand the catchment dynamics. The proposed algorithm considers the model space and automatically identifies the appropriate model configurations for a catchment of interest by optimizing user-defined learning objectives in a multi-objective optimization framework. The model induction capabilities of the proposed algorithm have been evaluated on the Blackwater River basin, Alabama, United States. The model configurations evolved through the model-building algorithm are compatible with the fieldwork investigations and previously reported research findings.</p>" @default.
- W3099214538 created "2020-11-23" @default.
- W3099214538 creator A5022755842 @default.
- W3099214538 creator A5056466283 @default.
- W3099214538 creator A5078962151 @default.
- W3099214538 date "2020-03-23" @default.
- W3099214538 modified "2023-09-23" @default.
- W3099214538 title "Physics Informed Machine Learning of Rainfall-Runoff Processes" @default.
- W3099214538 doi "https://doi.org/10.5194/egusphere-egu2020-12303" @default.
- W3099214538 hasPublicationYear "2020" @default.
- W3099214538 type Work @default.
- W3099214538 sameAs 3099214538 @default.
- W3099214538 citedByCount "0" @default.
- W3099214538 crossrefType "posted-content" @default.
- W3099214538 hasAuthorship W3099214538A5022755842 @default.
- W3099214538 hasAuthorship W3099214538A5056466283 @default.
- W3099214538 hasAuthorship W3099214538A5078962151 @default.
- W3099214538 hasConcept C110332635 @default.
- W3099214538 hasConcept C111919701 @default.
- W3099214538 hasConcept C119857082 @default.
- W3099214538 hasConcept C127413603 @default.
- W3099214538 hasConcept C13736549 @default.
- W3099214538 hasConcept C146978453 @default.
- W3099214538 hasConcept C154945302 @default.
- W3099214538 hasConcept C17744445 @default.
- W3099214538 hasConcept C185874996 @default.
- W3099214538 hasConcept C18903297 @default.
- W3099214538 hasConcept C199360897 @default.
- W3099214538 hasConcept C199539241 @default.
- W3099214538 hasConcept C201995342 @default.
- W3099214538 hasConcept C204323151 @default.
- W3099214538 hasConcept C2522767166 @default.
- W3099214538 hasConcept C2780451532 @default.
- W3099214538 hasConcept C41008148 @default.
- W3099214538 hasConcept C50477045 @default.
- W3099214538 hasConcept C527412718 @default.
- W3099214538 hasConcept C539667460 @default.
- W3099214538 hasConcept C81917197 @default.
- W3099214538 hasConcept C86803240 @default.
- W3099214538 hasConcept C94966114 @default.
- W3099214538 hasConcept C98045186 @default.
- W3099214538 hasConceptScore W3099214538C110332635 @default.
- W3099214538 hasConceptScore W3099214538C111919701 @default.
- W3099214538 hasConceptScore W3099214538C119857082 @default.
- W3099214538 hasConceptScore W3099214538C127413603 @default.
- W3099214538 hasConceptScore W3099214538C13736549 @default.
- W3099214538 hasConceptScore W3099214538C146978453 @default.
- W3099214538 hasConceptScore W3099214538C154945302 @default.
- W3099214538 hasConceptScore W3099214538C17744445 @default.
- W3099214538 hasConceptScore W3099214538C185874996 @default.
- W3099214538 hasConceptScore W3099214538C18903297 @default.
- W3099214538 hasConceptScore W3099214538C199360897 @default.
- W3099214538 hasConceptScore W3099214538C199539241 @default.
- W3099214538 hasConceptScore W3099214538C201995342 @default.
- W3099214538 hasConceptScore W3099214538C204323151 @default.
- W3099214538 hasConceptScore W3099214538C2522767166 @default.
- W3099214538 hasConceptScore W3099214538C2780451532 @default.
- W3099214538 hasConceptScore W3099214538C41008148 @default.
- W3099214538 hasConceptScore W3099214538C50477045 @default.
- W3099214538 hasConceptScore W3099214538C527412718 @default.
- W3099214538 hasConceptScore W3099214538C539667460 @default.
- W3099214538 hasConceptScore W3099214538C81917197 @default.
- W3099214538 hasConceptScore W3099214538C86803240 @default.
- W3099214538 hasConceptScore W3099214538C94966114 @default.
- W3099214538 hasConceptScore W3099214538C98045186 @default.
- W3099214538 hasLocation W30992145381 @default.
- W3099214538 hasOpenAccess W3099214538 @default.
- W3099214538 hasPrimaryLocation W30992145381 @default.
- W3099214538 hasRelatedWork W10478578 @default.
- W3099214538 hasRelatedWork W16391674 @default.
- W3099214538 hasRelatedWork W17119782 @default.
- W3099214538 hasRelatedWork W17846994 @default.
- W3099214538 hasRelatedWork W21442927 @default.
- W3099214538 hasRelatedWork W26929687 @default.
- W3099214538 hasRelatedWork W28000546 @default.
- W3099214538 hasRelatedWork W38733091 @default.
- W3099214538 hasRelatedWork W8898517 @default.
- W3099214538 hasRelatedWork W27820362 @default.
- W3099214538 isParatext "false" @default.
- W3099214538 isRetracted "false" @default.
- W3099214538 magId "3099214538" @default.
- W3099214538 workType "article" @default.