Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099409970> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W3099409970 endingPage "11" @default.
- W3099409970 startingPage "1" @default.
- W3099409970 abstract "Abstract Named entity recognition (NER) is one of the most challenging natural language processing (NLP) tasks, as its performance is related to constantly evolving languages and dependency on expert (human) annotation. The diverse and dynamic content on the web significantly raises the need for a more generalized approach—one that is capable of correctly classifying terms in a corpus and feeding subsequent NLP tasks, such as machine translation, query expansion, and many other applications. Although extensively researched in recent times, the variety of public corpora available nowadays provides room for new and more accurate methods to tackle the NER problem. This paper presents a novel method that uses deep learning techniques based on the capsule network architecture for predicting entities in a corpus. This type of network groups neurons into so-called capsules to detect specific features of an object without reducing the original input unlike convolutional neural networks and their ‘max-pooling’ strategy. Our extensive evaluation on several benchmarked datasets demonstrates how competitive our method is in comparison with state-of-the-art techniques and how the usage of the proposed architecture may represent a significant benefit to further NLP tasks, especially in cases where experts are needed. Also, we explore NER using a theoretical framework that leverages big data for security. For the sake of reproducibility, we make the codebase open-source 2 ." @default.
- W3099409970 created "2020-11-23" @default.
- W3099409970 creator A5005877741 @default.
- W3099409970 creator A5037865550 @default.
- W3099409970 creator A5050410519 @default.
- W3099409970 creator A5082046789 @default.
- W3099409970 date "2021-04-01" @default.
- W3099409970 modified "2023-09-23" @default.
- W3099409970 title "Entity-aware capsule network for multi-class classification of big data: A deep learning approach" @default.
- W3099409970 cites W1998345701 @default.
- W3099409970 cites W2011261343 @default.
- W3099409970 cites W2050103272 @default.
- W3099409970 cites W2064675550 @default.
- W3099409970 cites W2079735306 @default.
- W3099409970 cites W2250539671 @default.
- W3099409970 cites W2251559320 @default.
- W3099409970 cites W2467570466 @default.
- W3099409970 cites W2474198877 @default.
- W3099409970 cites W2493916176 @default.
- W3099409970 cites W2897040237 @default.
- W3099409970 cites W2918087949 @default.
- W3099409970 cites W2922968028 @default.
- W3099409970 cites W2929545370 @default.
- W3099409970 cites W2959012313 @default.
- W3099409970 cites W2959716986 @default.
- W3099409970 cites W2962904552 @default.
- W3099409970 cites W2962906565 @default.
- W3099409970 cites W2963625095 @default.
- W3099409970 cites W2964279602 @default.
- W3099409970 cites W2964966489 @default.
- W3099409970 cites W2971408387 @default.
- W3099409970 cites W2975052829 @default.
- W3099409970 cites W2987386900 @default.
- W3099409970 doi "https://doi.org/10.1016/j.future.2020.11.012" @default.
- W3099409970 hasPublicationYear "2021" @default.
- W3099409970 type Work @default.
- W3099409970 sameAs 3099409970 @default.
- W3099409970 citedByCount "11" @default.
- W3099409970 countsByYear W30994099702021 @default.
- W3099409970 countsByYear W30994099702022 @default.
- W3099409970 countsByYear W30994099702023 @default.
- W3099409970 crossrefType "journal-article" @default.
- W3099409970 hasAuthorship W3099409970A5005877741 @default.
- W3099409970 hasAuthorship W3099409970A5037865550 @default.
- W3099409970 hasAuthorship W3099409970A5050410519 @default.
- W3099409970 hasAuthorship W3099409970A5082046789 @default.
- W3099409970 hasConcept C108583219 @default.
- W3099409970 hasConcept C119857082 @default.
- W3099409970 hasConcept C124101348 @default.
- W3099409970 hasConcept C154945302 @default.
- W3099409970 hasConcept C204321447 @default.
- W3099409970 hasConcept C2522767166 @default.
- W3099409970 hasConcept C2777212361 @default.
- W3099409970 hasConcept C41008148 @default.
- W3099409970 hasConcept C75684735 @default.
- W3099409970 hasConceptScore W3099409970C108583219 @default.
- W3099409970 hasConceptScore W3099409970C119857082 @default.
- W3099409970 hasConceptScore W3099409970C124101348 @default.
- W3099409970 hasConceptScore W3099409970C154945302 @default.
- W3099409970 hasConceptScore W3099409970C204321447 @default.
- W3099409970 hasConceptScore W3099409970C2522767166 @default.
- W3099409970 hasConceptScore W3099409970C2777212361 @default.
- W3099409970 hasConceptScore W3099409970C41008148 @default.
- W3099409970 hasConceptScore W3099409970C75684735 @default.
- W3099409970 hasFunder F4320334937 @default.
- W3099409970 hasLocation W30994099701 @default.
- W3099409970 hasOpenAccess W3099409970 @default.
- W3099409970 hasPrimaryLocation W30994099701 @default.
- W3099409970 hasRelatedWork W3014300295 @default.
- W3099409970 hasRelatedWork W3164822677 @default.
- W3099409970 hasRelatedWork W3209328123 @default.
- W3099409970 hasRelatedWork W3215138031 @default.
- W3099409970 hasRelatedWork W4223943233 @default.
- W3099409970 hasRelatedWork W4225161397 @default.
- W3099409970 hasRelatedWork W4250304930 @default.
- W3099409970 hasRelatedWork W4299487748 @default.
- W3099409970 hasRelatedWork W4309045103 @default.
- W3099409970 hasRelatedWork W4312200629 @default.
- W3099409970 hasVolume "117" @default.
- W3099409970 isParatext "false" @default.
- W3099409970 isRetracted "false" @default.
- W3099409970 magId "3099409970" @default.
- W3099409970 workType "article" @default.