Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099423575> ?p ?o ?g. }
- W3099423575 abstract "Abstract There is an increasing demand for computing the relevant structures, equilibria, and long-timescale kinetics of biomolecular processes, such as protein-drug binding, from high-throughput molecular dynamics simulations. Current methods employ transformation of simulated coordinates into structural features, dimension reduction, clustering the dimension-reduced data, and estimation of a Markov state model or related model of the interconversion rates between molecular structures. This handcrafted approach demands a substantial amount of modeling expertise, as poor decisions at any step will lead to large modeling errors. Here we employ the variational approach for Markov processes (VAMP) to develop a deep learning framework for molecular kinetics using neural networks, dubbed VAMPnets. A VAMPnet encodes the entire mapping from molecular coordinates to Markov states, thus combining the whole data processing pipeline in a single end-to-end framework. Our method performs equally or better than state-of-the-art Markov modeling methods and provides easily interpretable few-state kinetic models." @default.
- W3099423575 created "2020-11-23" @default.
- W3099423575 creator A5014208179 @default.
- W3099423575 creator A5035236597 @default.
- W3099423575 creator A5055016850 @default.
- W3099423575 creator A5060090190 @default.
- W3099423575 date "2018-01-02" @default.
- W3099423575 modified "2023-10-13" @default.
- W3099423575 title "VAMPnets for deep learning of molecular kinetics" @default.
- W3099423575 cites W1524841735 @default.
- W3099423575 cites W1939606164 @default.
- W3099423575 cites W1970442506 @default.
- W3099423575 cites W1977838033 @default.
- W3099423575 cites W1979070806 @default.
- W3099423575 cites W1984649631 @default.
- W3099423575 cites W1988220126 @default.
- W3099423575 cites W1989544083 @default.
- W3099423575 cites W1993299912 @default.
- W3099423575 cites W1993555435 @default.
- W3099423575 cites W1993622915 @default.
- W3099423575 cites W1997054581 @default.
- W3099423575 cites W1998484176 @default.
- W3099423575 cites W2016885268 @default.
- W3099423575 cites W2021541427 @default.
- W3099423575 cites W2025899185 @default.
- W3099423575 cites W2029667189 @default.
- W3099423575 cites W2036958054 @default.
- W3099423575 cites W2046290306 @default.
- W3099423575 cites W2053348581 @default.
- W3099423575 cites W2056211671 @default.
- W3099423575 cites W2062421175 @default.
- W3099423575 cites W2063021109 @default.
- W3099423575 cites W2067035505 @default.
- W3099423575 cites W2067236515 @default.
- W3099423575 cites W2081645999 @default.
- W3099423575 cites W2085213650 @default.
- W3099423575 cites W2088647884 @default.
- W3099423575 cites W2088941628 @default.
- W3099423575 cites W2090500441 @default.
- W3099423575 cites W2091707670 @default.
- W3099423575 cites W2103496339 @default.
- W3099423575 cites W2111339528 @default.
- W3099423575 cites W2112796928 @default.
- W3099423575 cites W2122664326 @default.
- W3099423575 cites W2137595289 @default.
- W3099423575 cites W2145339207 @default.
- W3099423575 cites W2147988069 @default.
- W3099423575 cites W2167822502 @default.
- W3099423575 cites W2226825552 @default.
- W3099423575 cites W2296686360 @default.
- W3099423575 cites W2315297180 @default.
- W3099423575 cites W2317421918 @default.
- W3099423575 cites W2319675592 @default.
- W3099423575 cites W2397367200 @default.
- W3099423575 cites W2528583500 @default.
- W3099423575 cites W2540372843 @default.
- W3099423575 cites W2570547882 @default.
- W3099423575 cites W2577671591 @default.
- W3099423575 cites W2588045673 @default.
- W3099423575 cites W2591704465 @default.
- W3099423575 cites W2595314721 @default.
- W3099423575 cites W2602423270 @default.
- W3099423575 cites W2606287176 @default.
- W3099423575 cites W2623055862 @default.
- W3099423575 cites W2736124076 @default.
- W3099423575 cites W2919115771 @default.
- W3099423575 cites W2963426504 @default.
- W3099423575 cites W2964129632 @default.
- W3099423575 cites W2964149432 @default.
- W3099423575 cites W3098503865 @default.
- W3099423575 cites W3099674394 @default.
- W3099423575 cites W3099803807 @default.
- W3099423575 cites W3100312042 @default.
- W3099423575 cites W3100810942 @default.
- W3099423575 cites W3101449947 @default.
- W3099423575 cites W585413800 @default.
- W3099423575 doi "https://doi.org/10.1038/s41467-017-02388-1" @default.
- W3099423575 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5750224" @default.
- W3099423575 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29295994" @default.
- W3099423575 hasPublicationYear "2018" @default.
- W3099423575 type Work @default.
- W3099423575 sameAs 3099423575 @default.
- W3099423575 citedByCount "339" @default.
- W3099423575 countsByYear W30994235752017 @default.
- W3099423575 countsByYear W30994235752018 @default.
- W3099423575 countsByYear W30994235752019 @default.
- W3099423575 countsByYear W30994235752020 @default.
- W3099423575 countsByYear W30994235752021 @default.
- W3099423575 countsByYear W30994235752022 @default.
- W3099423575 countsByYear W30994235752023 @default.
- W3099423575 crossrefType "journal-article" @default.
- W3099423575 hasAuthorship W3099423575A5014208179 @default.
- W3099423575 hasAuthorship W3099423575A5035236597 @default.
- W3099423575 hasAuthorship W3099423575A5055016850 @default.
- W3099423575 hasAuthorship W3099423575A5060090190 @default.
- W3099423575 hasBestOaLocation W30994235751 @default.
- W3099423575 hasConcept C105795698 @default.
- W3099423575 hasConcept C119857082 @default.
- W3099423575 hasConcept C147597530 @default.
- W3099423575 hasConcept C154945302 @default.