Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099452017> ?p ?o ?g. }
- W3099452017 endingPage "114002" @default.
- W3099452017 startingPage "114002" @default.
- W3099452017 abstract "The distribution of electric charge in atomic nuclei is fundamental to our understanding of the complex nuclear dynamics and a quintessential observable to validate nuclear structure models. The aim of this study is to explore a novel approach that combines sophisticated models of nuclear structure with Bayesian neural networks (BNN) to generate predictions for the charge radii of thousands of nuclei throughout the nuclear chart. A class of relativistic energy density functionals is used to provide robust predictions for nuclear charge radii. In turn, these predictions are refined through Bayesian learning for a neural network that is trained using residuals between theoretical predictions and the experimental data. Although predictions obtained with density functional theory provide a fairly good description of experiment, our results show significant improvement (better than 40%) after BNN refinement. Moreover, these improved results for nuclear charge radii are supplemented with theoretical error bars. We have successfully demonstrated the ability of the BNN approach to significantly increase the accuracy of nuclear models in the predictions of nuclear charge radii. However, as many before us, we failed to uncover the underlying physics behind the intriguing behavior of charge radii along the calcium isotopic chain." @default.
- W3099452017 created "2020-11-23" @default.
- W3099452017 creator A5000367988 @default.
- W3099452017 creator A5006828502 @default.
- W3099452017 creator A5045192274 @default.
- W3099452017 date "2016-10-17" @default.
- W3099452017 modified "2023-10-07" @default.
- W3099452017 title "Nuclear charge radii: density functional theory meets Bayesian neural networks" @default.
- W3099452017 cites W1541071550 @default.
- W3099452017 cites W1567512734 @default.
- W3099452017 cites W1643013515 @default.
- W3099452017 cites W1721693680 @default.
- W3099452017 cites W1737513720 @default.
- W3099452017 cites W1946796168 @default.
- W3099452017 cites W1965952013 @default.
- W3099452017 cites W1969176141 @default.
- W3099452017 cites W1970630325 @default.
- W3099452017 cites W1990861491 @default.
- W3099452017 cites W1997664190 @default.
- W3099452017 cites W2002889190 @default.
- W3099452017 cites W2002917384 @default.
- W3099452017 cites W2007779595 @default.
- W3099452017 cites W2012415715 @default.
- W3099452017 cites W2019449965 @default.
- W3099452017 cites W2020852077 @default.
- W3099452017 cites W2021064950 @default.
- W3099452017 cites W2023683810 @default.
- W3099452017 cites W2026915078 @default.
- W3099452017 cites W2028736041 @default.
- W3099452017 cites W2031658684 @default.
- W3099452017 cites W2038400049 @default.
- W3099452017 cites W2038554013 @default.
- W3099452017 cites W2041254130 @default.
- W3099452017 cites W2048760155 @default.
- W3099452017 cites W2055490954 @default.
- W3099452017 cites W2058279883 @default.
- W3099452017 cites W2058345843 @default.
- W3099452017 cites W2060768354 @default.
- W3099452017 cites W2065114980 @default.
- W3099452017 cites W2072686831 @default.
- W3099452017 cites W2076908219 @default.
- W3099452017 cites W2087989968 @default.
- W3099452017 cites W2090114183 @default.
- W3099452017 cites W2091550193 @default.
- W3099452017 cites W2093529617 @default.
- W3099452017 cites W2103383195 @default.
- W3099452017 cites W2111306697 @default.
- W3099452017 cites W2116723448 @default.
- W3099452017 cites W2122203937 @default.
- W3099452017 cites W2124833255 @default.
- W3099452017 cites W2127748267 @default.
- W3099452017 cites W2130580107 @default.
- W3099452017 cites W2137983211 @default.
- W3099452017 cites W2163741880 @default.
- W3099452017 cites W2165591715 @default.
- W3099452017 cites W2244684221 @default.
- W3099452017 cites W2269746030 @default.
- W3099452017 cites W2320089772 @default.
- W3099452017 cites W2405594232 @default.
- W3099452017 cites W2792884460 @default.
- W3099452017 cites W2998313242 @default.
- W3099452017 cites W3098054843 @default.
- W3099452017 cites W3098669482 @default.
- W3099452017 cites W3100008665 @default.
- W3099452017 cites W3100915065 @default.
- W3099452017 cites W3106217603 @default.
- W3099452017 cites W4232314582 @default.
- W3099452017 cites W4247504432 @default.
- W3099452017 doi "https://doi.org/10.1088/0954-3899/43/11/114002" @default.
- W3099452017 hasPublicationYear "2016" @default.
- W3099452017 type Work @default.
- W3099452017 sameAs 3099452017 @default.
- W3099452017 citedByCount "80" @default.
- W3099452017 countsByYear W30994520172017 @default.
- W3099452017 countsByYear W30994520172018 @default.
- W3099452017 countsByYear W30994520172019 @default.
- W3099452017 countsByYear W30994520172020 @default.
- W3099452017 countsByYear W30994520172021 @default.
- W3099452017 countsByYear W30994520172022 @default.
- W3099452017 countsByYear W30994520172023 @default.
- W3099452017 crossrefType "journal-article" @default.
- W3099452017 hasAuthorship W3099452017A5000367988 @default.
- W3099452017 hasAuthorship W3099452017A5006828502 @default.
- W3099452017 hasAuthorship W3099452017A5045192274 @default.
- W3099452017 hasBestOaLocation W30994520173 @default.
- W3099452017 hasConcept C107673813 @default.
- W3099452017 hasConcept C11413529 @default.
- W3099452017 hasConcept C121332964 @default.
- W3099452017 hasConcept C121864883 @default.
- W3099452017 hasConcept C138775182 @default.
- W3099452017 hasConcept C147120987 @default.
- W3099452017 hasConcept C150708132 @default.
- W3099452017 hasConcept C154945302 @default.
- W3099452017 hasConcept C188082385 @default.
- W3099452017 hasConcept C30475298 @default.
- W3099452017 hasConcept C32848918 @default.
- W3099452017 hasConcept C41008148 @default.
- W3099452017 hasConcept C50644808 @default.