Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099466591> ?p ?o ?g. }
- W3099466591 endingPage "689" @default.
- W3099466591 startingPage "669" @default.
- W3099466591 abstract "Graph models are relevant in many fields, such as distributed computing, intelligent tutoring systems or social network analysis. In many cases, such models need to take changes in the graph structure into account, i.e. a varying number of nodes or edges. Predicting such changes within graphs can be expected to yield important insight with respect to the underlying dynamics, e.g. with respect to user behaviour. However, predictive techniques in the past have almost exclusively focused on single edges or nodes. In this contribution, we attempt to predict the future state of a graph as a whole. We propose to phrase time series prediction as a regression problem and apply dissimilarity- or kernel-based regression techniques, such as 1-nearest neighbor, kernel regression and Gaussian process regression, which can be applied to graphs via graph kernels. The output of the regression is a point embedded in a pseudo-Euclidean space, which can be analyzed using subsequent dissimilarity- or kernel-based processing methods. We discuss strategies to speed up Gaussian Processes regression from cubic to linear time and evaluate our approach on two well-established theoretical models of graph evolution as well as two real data sets from the domain of intelligent tutoring systems. We find that simple regression methods, such as kernel regression, are sufficient to capture the dynamics in the theoretical models, but that Gaussian process regression significantly improves the prediction error for real-world data." @default.
- W3099466591 created "2020-11-23" @default.
- W3099466591 creator A5044492514 @default.
- W3099466591 creator A5057832550 @default.
- W3099466591 creator A5091180862 @default.
- W3099466591 date "2017-08-11" @default.
- W3099466591 modified "2023-10-13" @default.
- W3099466591 title "Time Series Prediction for Graphs in Kernel and Dissimilarity Spaces" @default.
- W3099466591 cites W1480708938 @default.
- W3099466591 cites W1514405275 @default.
- W3099466591 cites W1518613644 @default.
- W3099466591 cites W1533966446 @default.
- W3099466591 cites W1568341987 @default.
- W3099466591 cites W1746637951 @default.
- W3099466591 cites W1816257748 @default.
- W3099466591 cites W1964910722 @default.
- W3099466591 cites W1971713783 @default.
- W3099466591 cites W1976373002 @default.
- W3099466591 cites W1979104937 @default.
- W3099466591 cites W1983681808 @default.
- W3099466591 cites W1986397639 @default.
- W3099466591 cites W2003707464 @default.
- W3099466591 cites W2007572995 @default.
- W3099466591 cites W2008255964 @default.
- W3099466591 cites W2008620264 @default.
- W3099466591 cites W2009077846 @default.
- W3099466591 cites W2010541316 @default.
- W3099466591 cites W2013672662 @default.
- W3099466591 cites W2016790987 @default.
- W3099466591 cites W2018745865 @default.
- W3099466591 cites W2032005951 @default.
- W3099466591 cites W2032338144 @default.
- W3099466591 cites W2036256527 @default.
- W3099466591 cites W2047259686 @default.
- W3099466591 cites W2066459332 @default.
- W3099466591 cites W2069889599 @default.
- W3099466591 cites W2091019377 @default.
- W3099466591 cites W2091693228 @default.
- W3099466591 cites W2102907934 @default.
- W3099466591 cites W2120157859 @default.
- W3099466591 cites W2133396101 @default.
- W3099466591 cites W2155074104 @default.
- W3099466591 cites W2158614393 @default.
- W3099466591 cites W2172064003 @default.
- W3099466591 cites W2232548815 @default.
- W3099466591 cites W2234183288 @default.
- W3099466591 cites W3142451776 @default.
- W3099466591 cites W4211049957 @default.
- W3099466591 cites W4232932184 @default.
- W3099466591 cites W4243099941 @default.
- W3099466591 doi "https://doi.org/10.1007/s11063-017-9684-5" @default.
- W3099466591 hasPublicationYear "2017" @default.
- W3099466591 type Work @default.
- W3099466591 sameAs 3099466591 @default.
- W3099466591 citedByCount "11" @default.
- W3099466591 countsByYear W30994665912019 @default.
- W3099466591 countsByYear W30994665912020 @default.
- W3099466591 countsByYear W30994665912021 @default.
- W3099466591 countsByYear W30994665912022 @default.
- W3099466591 crossrefType "journal-article" @default.
- W3099466591 hasAuthorship W3099466591A5044492514 @default.
- W3099466591 hasAuthorship W3099466591A5057832550 @default.
- W3099466591 hasAuthorship W3099466591A5091180862 @default.
- W3099466591 hasBestOaLocation W30994665912 @default.
- W3099466591 hasConcept C100595998 @default.
- W3099466591 hasConcept C105795698 @default.
- W3099466591 hasConcept C11413529 @default.
- W3099466591 hasConcept C114614502 @default.
- W3099466591 hasConcept C119857082 @default.
- W3099466591 hasConcept C121332964 @default.
- W3099466591 hasConcept C122280245 @default.
- W3099466591 hasConcept C12267149 @default.
- W3099466591 hasConcept C132525143 @default.
- W3099466591 hasConcept C154945302 @default.
- W3099466591 hasConcept C160446489 @default.
- W3099466591 hasConcept C163716315 @default.
- W3099466591 hasConcept C200695384 @default.
- W3099466591 hasConcept C33923547 @default.
- W3099466591 hasConcept C41008148 @default.
- W3099466591 hasConcept C61326573 @default.
- W3099466591 hasConcept C62520636 @default.
- W3099466591 hasConcept C74193536 @default.
- W3099466591 hasConcept C80444323 @default.
- W3099466591 hasConcept C83546350 @default.
- W3099466591 hasConceptScore W3099466591C100595998 @default.
- W3099466591 hasConceptScore W3099466591C105795698 @default.
- W3099466591 hasConceptScore W3099466591C11413529 @default.
- W3099466591 hasConceptScore W3099466591C114614502 @default.
- W3099466591 hasConceptScore W3099466591C119857082 @default.
- W3099466591 hasConceptScore W3099466591C121332964 @default.
- W3099466591 hasConceptScore W3099466591C122280245 @default.
- W3099466591 hasConceptScore W3099466591C12267149 @default.
- W3099466591 hasConceptScore W3099466591C132525143 @default.
- W3099466591 hasConceptScore W3099466591C154945302 @default.
- W3099466591 hasConceptScore W3099466591C160446489 @default.
- W3099466591 hasConceptScore W3099466591C163716315 @default.
- W3099466591 hasConceptScore W3099466591C200695384 @default.
- W3099466591 hasConceptScore W3099466591C33923547 @default.