Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099502775> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W3099502775 abstract "Abstract This paper aims at developing a fully automated hull form design technique employing an Neural Network and Genetic Algorithm methods resulting in accelerated convergence. For generating an input data that will be, by and large, a close relative of the desired hull, a linear relation has been assumed between the half breadth of different sections and principal dimensions (length, breadth, draft or (displacement)1/3) of a particular type of vessel. Compared to starting with a random value of the input, this technique resulted in faster convergence. The weight matrix for each of these parameters is produced from data obtained from the population. The half-breadth table for a new vessel can be obtained by multiplying the weight matrix with corresponding parameter. However, the half-breadth table obtained in such way may not provide the required displacement and speed of the vessel. Therefore, some readjustments of some of the principal dimensions are required. Neural Networks (Wasserman, 1989) has been used to find the required values of such improved design parameters (principal dimensions). The final design process consists of searching for the exact solution by examining several generations generated by the GA (Goldberg, 1989). The convergence criterion is the summed offset error, which is to be within the envelope defined by the tolerances. Since GA doesn’t guarantee fairness of the surface of the hull form, B-spline curve fitting method is used to obtain a fair hull. Thus, the hull form generated through this process is fully automated, accurate and having fair surface. The technique is also found to be an efficient one." @default.
- W3099502775 created "2020-11-23" @default.
- W3099502775 creator A5043516057 @default.
- W3099502775 creator A5062406653 @default.
- W3099502775 creator A5063772167 @default.
- W3099502775 date "2001-09-09" @default.
- W3099502775 modified "2023-09-27" @default.
- W3099502775 title "Effectiveness of Neural Network and Genetic Algorithm in Hull Form Design" @default.
- W3099502775 doi "https://doi.org/10.1115/detc2001/dac-21078" @default.
- W3099502775 hasPublicationYear "2001" @default.
- W3099502775 type Work @default.
- W3099502775 sameAs 3099502775 @default.
- W3099502775 citedByCount "0" @default.
- W3099502775 crossrefType "proceedings-article" @default.
- W3099502775 hasAuthorship W3099502775A5043516057 @default.
- W3099502775 hasAuthorship W3099502775A5062406653 @default.
- W3099502775 hasAuthorship W3099502775A5063772167 @default.
- W3099502775 hasConcept C106516650 @default.
- W3099502775 hasConcept C11413529 @default.
- W3099502775 hasConcept C119857082 @default.
- W3099502775 hasConcept C127413603 @default.
- W3099502775 hasConcept C154945302 @default.
- W3099502775 hasConcept C199104240 @default.
- W3099502775 hasConcept C37423430 @default.
- W3099502775 hasConcept C41008148 @default.
- W3099502775 hasConcept C50644808 @default.
- W3099502775 hasConcept C8880873 @default.
- W3099502775 hasConceptScore W3099502775C106516650 @default.
- W3099502775 hasConceptScore W3099502775C11413529 @default.
- W3099502775 hasConceptScore W3099502775C119857082 @default.
- W3099502775 hasConceptScore W3099502775C127413603 @default.
- W3099502775 hasConceptScore W3099502775C154945302 @default.
- W3099502775 hasConceptScore W3099502775C199104240 @default.
- W3099502775 hasConceptScore W3099502775C37423430 @default.
- W3099502775 hasConceptScore W3099502775C41008148 @default.
- W3099502775 hasConceptScore W3099502775C50644808 @default.
- W3099502775 hasConceptScore W3099502775C8880873 @default.
- W3099502775 hasLocation W30995027751 @default.
- W3099502775 hasOpenAccess W3099502775 @default.
- W3099502775 hasPrimaryLocation W30995027751 @default.
- W3099502775 hasRelatedWork W1515937655 @default.
- W3099502775 hasRelatedWork W1566467954 @default.
- W3099502775 hasRelatedWork W1594462729 @default.
- W3099502775 hasRelatedWork W1665644440 @default.
- W3099502775 hasRelatedWork W1988365591 @default.
- W3099502775 hasRelatedWork W1996387855 @default.
- W3099502775 hasRelatedWork W2010683279 @default.
- W3099502775 hasRelatedWork W2030457514 @default.
- W3099502775 hasRelatedWork W2037917326 @default.
- W3099502775 hasRelatedWork W2042622157 @default.
- W3099502775 hasRelatedWork W2058545225 @default.
- W3099502775 hasRelatedWork W2084114876 @default.
- W3099502775 hasRelatedWork W2098002797 @default.
- W3099502775 hasRelatedWork W2133199148 @default.
- W3099502775 hasRelatedWork W2135537570 @default.
- W3099502775 hasRelatedWork W2152159871 @default.
- W3099502775 hasRelatedWork W2324984290 @default.
- W3099502775 hasRelatedWork W2391655979 @default.
- W3099502775 hasRelatedWork W2542620315 @default.
- W3099502775 hasRelatedWork W3112604202 @default.
- W3099502775 isParatext "false" @default.
- W3099502775 isRetracted "false" @default.
- W3099502775 magId "3099502775" @default.
- W3099502775 workType "article" @default.