Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099523636> ?p ?o ?g. }
- W3099523636 endingPage "1802" @default.
- W3099523636 startingPage "1789" @default.
- W3099523636 abstract "We are interested in assigning a pre-specified number of nodes as leaders in order to minimize the mean-square deviation from consensus in stochastically forced networks. This problem arises in several applications including control of vehicular formations and localization in sensor networks. For networks with leaders subject to noise, we show that the Boolean constraints (which indicate whether a node is a leader) are the only source of nonconvexity. By relaxing these constraints to their convex hull we obtain a lower bound on the global optimal value. We also use a simple but efficient greedy algorithm to identify leaders and to compute an upper bound. For networks with leaders that perfectly follow their desired trajectories, we identify an additional source of nonconvexity in the form of a rank constraint. Removal of the rank constraint and relaxation of the Boolean constraints yields a semidefinite program for which we develop a customized algorithm well-suited for large networks. Several examples ranging from regular lattices to random graphs are provided to illustrate the effectiveness of the developed algorithms." @default.
- W3099523636 created "2020-11-23" @default.
- W3099523636 creator A5055236645 @default.
- W3099523636 creator A5057639149 @default.
- W3099523636 creator A5087790067 @default.
- W3099523636 date "2014-07-01" @default.
- W3099523636 modified "2023-10-14" @default.
- W3099523636 title "Algorithms for Leader Selection in Stochastically Forced Consensus Networks" @default.
- W3099523636 cites W1963649370 @default.
- W3099523636 cites W1968160731 @default.
- W3099523636 cites W1971386559 @default.
- W3099523636 cites W1987717935 @default.
- W3099523636 cites W1996215314 @default.
- W3099523636 cites W1997155281 @default.
- W3099523636 cites W2015953751 @default.
- W3099523636 cites W2024995587 @default.
- W3099523636 cites W2040114800 @default.
- W3099523636 cites W2050096026 @default.
- W3099523636 cites W2050962703 @default.
- W3099523636 cites W2052317337 @default.
- W3099523636 cites W2067153340 @default.
- W3099523636 cites W2077076780 @default.
- W3099523636 cites W2086645750 @default.
- W3099523636 cites W2090360864 @default.
- W3099523636 cites W2093356327 @default.
- W3099523636 cites W2098523806 @default.
- W3099523636 cites W2099689250 @default.
- W3099523636 cites W2105434744 @default.
- W3099523636 cites W2109468658 @default.
- W3099523636 cites W2116673134 @default.
- W3099523636 cites W2123610102 @default.
- W3099523636 cites W2126826802 @default.
- W3099523636 cites W2126828700 @default.
- W3099523636 cites W2129488612 @default.
- W3099523636 cites W2131181636 @default.
- W3099523636 cites W2138624490 @default.
- W3099523636 cites W2145291156 @default.
- W3099523636 cites W2151685478 @default.
- W3099523636 cites W2154588446 @default.
- W3099523636 cites W2161455936 @default.
- W3099523636 cites W2165744313 @default.
- W3099523636 cites W2166417226 @default.
- W3099523636 cites W2169207653 @default.
- W3099523636 cites W2332701672 @default.
- W3099523636 cites W2963300745 @default.
- W3099523636 cites W3102587215 @default.
- W3099523636 cites W3104175967 @default.
- W3099523636 cites W4231542018 @default.
- W3099523636 cites W4250134109 @default.
- W3099523636 cites W4250589301 @default.
- W3099523636 cites W4292363360 @default.
- W3099523636 cites W613360614 @default.
- W3099523636 cites W1964234880 @default.
- W3099523636 doi "https://doi.org/10.1109/tac.2014.2314223" @default.
- W3099523636 hasPublicationYear "2014" @default.
- W3099523636 type Work @default.
- W3099523636 sameAs 3099523636 @default.
- W3099523636 citedByCount "83" @default.
- W3099523636 countsByYear W30995236362013 @default.
- W3099523636 countsByYear W30995236362014 @default.
- W3099523636 countsByYear W30995236362015 @default.
- W3099523636 countsByYear W30995236362016 @default.
- W3099523636 countsByYear W30995236362017 @default.
- W3099523636 countsByYear W30995236362018 @default.
- W3099523636 countsByYear W30995236362019 @default.
- W3099523636 countsByYear W30995236362020 @default.
- W3099523636 countsByYear W30995236362021 @default.
- W3099523636 countsByYear W30995236362022 @default.
- W3099523636 countsByYear W30995236362023 @default.
- W3099523636 crossrefType "journal-article" @default.
- W3099523636 hasAuthorship W3099523636A5055236645 @default.
- W3099523636 hasAuthorship W3099523636A5057639149 @default.
- W3099523636 hasAuthorship W3099523636A5087790067 @default.
- W3099523636 hasBestOaLocation W30995236362 @default.
- W3099523636 hasConcept C112680207 @default.
- W3099523636 hasConcept C114614502 @default.
- W3099523636 hasConcept C126255220 @default.
- W3099523636 hasConcept C127413603 @default.
- W3099523636 hasConcept C134306372 @default.
- W3099523636 hasConcept C15744967 @default.
- W3099523636 hasConcept C164226766 @default.
- W3099523636 hasConcept C206194317 @default.
- W3099523636 hasConcept C2524010 @default.
- W3099523636 hasConcept C2776029896 @default.
- W3099523636 hasConcept C2776036281 @default.
- W3099523636 hasConcept C33923547 @default.
- W3099523636 hasConcept C41008148 @default.
- W3099523636 hasConcept C62611344 @default.
- W3099523636 hasConcept C66938386 @default.
- W3099523636 hasConcept C77553402 @default.
- W3099523636 hasConcept C77805123 @default.
- W3099523636 hasConceptScore W3099523636C112680207 @default.
- W3099523636 hasConceptScore W3099523636C114614502 @default.
- W3099523636 hasConceptScore W3099523636C126255220 @default.
- W3099523636 hasConceptScore W3099523636C127413603 @default.
- W3099523636 hasConceptScore W3099523636C134306372 @default.
- W3099523636 hasConceptScore W3099523636C15744967 @default.
- W3099523636 hasConceptScore W3099523636C164226766 @default.