Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099526918> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W3099526918 endingPage "101902" @default.
- W3099526918 startingPage "101902" @default.
- W3099526918 abstract "Developing predictive intelligence in neuroscience for learning how to generate multimodal medical data from a single modality can improve neurological disorder diagnosis with minimal data acquisition resources. Existing deep learning frameworks are mainly tailored for images, which might fail in handling geometric data (e.g., brain graphs). Specifically, predicting a target brain graph from a single source brain graph remains largely unexplored. Solving such problem is generally challenged with domain fracturecaused by the difference in distribution between source and target domains. Besides, solving the prediction and domain fracture independently might not be optimal for both tasks. To address these challenges, we unprecedentedly propose a Learning-guided Graph Dual Adversarial Domain Alignment (LG-DADA) framework for predicting a target brain graph from a source brain graph. The proposed LG-DADA is grounded in three fundamental contributions: (1) a source data pre-clustering step using manifold learning to firstly handle source data heterogeneity and secondly circumvent mode collapse in generative adversarial learning, (2) a domain alignment of source domain to the target domain by adversarially learning their latent representations, and (3) a dual adversarial regularization that jointly learns a source embedding of training and testing brain graphs using two discriminators and predict the training target graphs. Results on morphological brain graphs synthesis showed that our method produces better prediction accuracy and visual quality as compared to other graph synthesis methods." @default.
- W3099526918 created "2020-11-23" @default.
- W3099526918 creator A5000463539 @default.
- W3099526918 creator A5048784346 @default.
- W3099526918 creator A5083045865 @default.
- W3099526918 date "2021-02-01" @default.
- W3099526918 modified "2023-09-25" @default.
- W3099526918 title "Brain graph synthesis by dual adversarial domain alignment and target graph prediction from a source graph" @default.
- W3099526918 cites W2100235303 @default.
- W3099526918 cites W2129812935 @default.
- W3099526918 cites W2146406922 @default.
- W3099526918 cites W2208340121 @default.
- W3099526918 cites W2295124130 @default.
- W3099526918 cites W2558748708 @default.
- W3099526918 cites W2602744457 @default.
- W3099526918 cites W2610602634 @default.
- W3099526918 cites W2794107469 @default.
- W3099526918 cites W2892495880 @default.
- W3099526918 cites W2898535604 @default.
- W3099526918 cites W2945589020 @default.
- W3099526918 cites W2962793481 @default.
- W3099526918 cites W2963882942 @default.
- W3099526918 cites W2988958536 @default.
- W3099526918 cites W3037798305 @default.
- W3099526918 cites W3039883906 @default.
- W3099526918 cites W4241074797 @default.
- W3099526918 cites W4247203864 @default.
- W3099526918 cites W4247712068 @default.
- W3099526918 doi "https://doi.org/10.1016/j.media.2020.101902" @default.
- W3099526918 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33338871" @default.
- W3099526918 hasPublicationYear "2021" @default.
- W3099526918 type Work @default.
- W3099526918 sameAs 3099526918 @default.
- W3099526918 citedByCount "15" @default.
- W3099526918 countsByYear W30995269182021 @default.
- W3099526918 countsByYear W30995269182022 @default.
- W3099526918 countsByYear W30995269182023 @default.
- W3099526918 crossrefType "journal-article" @default.
- W3099526918 hasAuthorship W3099526918A5000463539 @default.
- W3099526918 hasAuthorship W3099526918A5048784346 @default.
- W3099526918 hasAuthorship W3099526918A5083045865 @default.
- W3099526918 hasConcept C119857082 @default.
- W3099526918 hasConcept C132525143 @default.
- W3099526918 hasConcept C153180895 @default.
- W3099526918 hasConcept C154945302 @default.
- W3099526918 hasConcept C2776135515 @default.
- W3099526918 hasConcept C41008148 @default.
- W3099526918 hasConcept C41608201 @default.
- W3099526918 hasConcept C75564084 @default.
- W3099526918 hasConcept C80444323 @default.
- W3099526918 hasConceptScore W3099526918C119857082 @default.
- W3099526918 hasConceptScore W3099526918C132525143 @default.
- W3099526918 hasConceptScore W3099526918C153180895 @default.
- W3099526918 hasConceptScore W3099526918C154945302 @default.
- W3099526918 hasConceptScore W3099526918C2776135515 @default.
- W3099526918 hasConceptScore W3099526918C41008148 @default.
- W3099526918 hasConceptScore W3099526918C41608201 @default.
- W3099526918 hasConceptScore W3099526918C75564084 @default.
- W3099526918 hasConceptScore W3099526918C80444323 @default.
- W3099526918 hasFunder F4320324489 @default.
- W3099526918 hasLocation W30995269181 @default.
- W3099526918 hasOpenAccess W3099526918 @default.
- W3099526918 hasPrimaryLocation W30995269181 @default.
- W3099526918 hasRelatedWork W2893186803 @default.
- W3099526918 hasRelatedWork W2923818335 @default.
- W3099526918 hasRelatedWork W3035116611 @default.
- W3099526918 hasRelatedWork W3044158376 @default.
- W3099526918 hasRelatedWork W3044354590 @default.
- W3099526918 hasRelatedWork W3149439221 @default.
- W3099526918 hasRelatedWork W4285120483 @default.
- W3099526918 hasRelatedWork W4287710676 @default.
- W3099526918 hasRelatedWork W4287763734 @default.
- W3099526918 hasRelatedWork W4323323198 @default.
- W3099526918 hasVolume "68" @default.
- W3099526918 isParatext "false" @default.
- W3099526918 isRetracted "false" @default.
- W3099526918 magId "3099526918" @default.
- W3099526918 workType "article" @default.