Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099562783> ?p ?o ?g. }
- W3099562783 endingPage "751" @default.
- W3099562783 startingPage "736" @default.
- W3099562783 abstract "Fault diagnostics and prognostics are important topics both in practice and research. There is an intense pressure on industrial plants to continue reducing unscheduled downtime, performance degradation, and safety hazards, which requires detecting and recovering potential faults in its early stages. Intelligent fault diagnosis is a promising tool due to its ability to rapidly and efficiently processing collected signals and providing accurate diagnosis results. Although many studies have developed machine leaning (M.L) and deep learning (D.L) algorithms for detecting the bearing fault, the results have generally been limited to relatively small train and test datasets and the input data has been manipulated (selective features used) to reach high accuracy. In this work, the raw data, collected from accelerometers (time-domain features) are taken as the input of a novel temporal sequence prediction algorithm to present an end-to-end method for fault detection. We use equivalent temporal sequences as the input of a novel Convolutional Long-Short-Term-Memory Recurrent Neural Network (CRNN) to detect the bearing fault with the highest accuracy in the shortest possible time. The method can reach the highest accuracy in the literature, to the best knowledge of the authors of the present paper, voiding any sort of pre-processing or manipulation of the input data. Effectiveness and feasibility of the fault diagnosis method are validated by applying it to two commonly used benchmark real vibration datasets and comparing the result with the other intelligent fault diagnosis methods." @default.
- W3099562783 created "2020-11-23" @default.
- W3099562783 creator A5021319704 @default.
- W3099562783 creator A5033765840 @default.
- W3099562783 creator A5057439880 @default.
- W3099562783 date "2020-08-27" @default.
- W3099562783 modified "2023-10-17" @default.
- W3099562783 title "End-to-end CNN + LSTM deep learning approach for bearing fault diagnosis" @default.
- W3099562783 cites W1600744878 @default.
- W3099562783 cites W1972904341 @default.
- W3099562783 cites W2019505419 @default.
- W3099562783 cites W2030598869 @default.
- W3099562783 cites W2064675550 @default.
- W3099562783 cites W2105756147 @default.
- W3099562783 cites W2108744642 @default.
- W3099562783 cites W2112601224 @default.
- W3099562783 cites W2144187919 @default.
- W3099562783 cites W2160987092 @default.
- W3099562783 cites W2257307118 @default.
- W3099562783 cites W2500751094 @default.
- W3099562783 cites W2591591405 @default.
- W3099562783 cites W2788134583 @default.
- W3099562783 cites W2800726910 @default.
- W3099562783 cites W2804879845 @default.
- W3099562783 cites W2812669263 @default.
- W3099562783 cites W2887767982 @default.
- W3099562783 cites W2904805311 @default.
- W3099562783 cites W2939880928 @default.
- W3099562783 cites W2942747661 @default.
- W3099562783 cites W2952381828 @default.
- W3099562783 cites W2954917254 @default.
- W3099562783 cites W2961333734 @default.
- W3099562783 cites W2962980800 @default.
- W3099562783 cites W4232447824 @default.
- W3099562783 doi "https://doi.org/10.1007/s10489-020-01859-1" @default.
- W3099562783 hasPublicationYear "2020" @default.
- W3099562783 type Work @default.
- W3099562783 sameAs 3099562783 @default.
- W3099562783 citedByCount "67" @default.
- W3099562783 countsByYear W30995627832021 @default.
- W3099562783 countsByYear W30995627832022 @default.
- W3099562783 countsByYear W30995627832023 @default.
- W3099562783 crossrefType "journal-article" @default.
- W3099562783 hasAuthorship W3099562783A5021319704 @default.
- W3099562783 hasAuthorship W3099562783A5033765840 @default.
- W3099562783 hasAuthorship W3099562783A5057439880 @default.
- W3099562783 hasBestOaLocation W30995627832 @default.
- W3099562783 hasConcept C108583219 @default.
- W3099562783 hasConcept C111919701 @default.
- W3099562783 hasConcept C119857082 @default.
- W3099562783 hasConcept C124101348 @default.
- W3099562783 hasConcept C127313418 @default.
- W3099562783 hasConcept C129364497 @default.
- W3099562783 hasConcept C13280743 @default.
- W3099562783 hasConcept C153180895 @default.
- W3099562783 hasConcept C154945302 @default.
- W3099562783 hasConcept C165205528 @default.
- W3099562783 hasConcept C175551986 @default.
- W3099562783 hasConcept C180591934 @default.
- W3099562783 hasConcept C185798385 @default.
- W3099562783 hasConcept C199978012 @default.
- W3099562783 hasConcept C205649164 @default.
- W3099562783 hasConcept C23123220 @default.
- W3099562783 hasConcept C41008148 @default.
- W3099562783 hasConcept C79403827 @default.
- W3099562783 hasConcept C81363708 @default.
- W3099562783 hasConcept C88548561 @default.
- W3099562783 hasConcept C89805583 @default.
- W3099562783 hasConceptScore W3099562783C108583219 @default.
- W3099562783 hasConceptScore W3099562783C111919701 @default.
- W3099562783 hasConceptScore W3099562783C119857082 @default.
- W3099562783 hasConceptScore W3099562783C124101348 @default.
- W3099562783 hasConceptScore W3099562783C127313418 @default.
- W3099562783 hasConceptScore W3099562783C129364497 @default.
- W3099562783 hasConceptScore W3099562783C13280743 @default.
- W3099562783 hasConceptScore W3099562783C153180895 @default.
- W3099562783 hasConceptScore W3099562783C154945302 @default.
- W3099562783 hasConceptScore W3099562783C165205528 @default.
- W3099562783 hasConceptScore W3099562783C175551986 @default.
- W3099562783 hasConceptScore W3099562783C180591934 @default.
- W3099562783 hasConceptScore W3099562783C185798385 @default.
- W3099562783 hasConceptScore W3099562783C199978012 @default.
- W3099562783 hasConceptScore W3099562783C205649164 @default.
- W3099562783 hasConceptScore W3099562783C23123220 @default.
- W3099562783 hasConceptScore W3099562783C41008148 @default.
- W3099562783 hasConceptScore W3099562783C79403827 @default.
- W3099562783 hasConceptScore W3099562783C81363708 @default.
- W3099562783 hasConceptScore W3099562783C88548561 @default.
- W3099562783 hasConceptScore W3099562783C89805583 @default.
- W3099562783 hasIssue "2" @default.
- W3099562783 hasLocation W30995627831 @default.
- W3099562783 hasLocation W30995627832 @default.
- W3099562783 hasOpenAccess W3099562783 @default.
- W3099562783 hasPrimaryLocation W30995627831 @default.
- W3099562783 hasRelatedWork W2337926734 @default.
- W3099562783 hasRelatedWork W2732542196 @default.
- W3099562783 hasRelatedWork W2738221750 @default.
- W3099562783 hasRelatedWork W2927123024 @default.