Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099589024> ?p ?o ?g. }
- W3099589024 endingPage "e1008227" @default.
- W3099589024 startingPage "e1008227" @default.
- W3099589024 abstract "Cryo-electron tomography (cryo-ET) provides 3D visualization of subcellular components in the near-native state and at sub-molecular resolutions in single cells, demonstrating an increasingly important role in structural biology in situ . However, systematic recognition and recovery of macromolecular structures in cryo-ET data remain challenging as a result of low signal-to-noise ratio (SNR), small sizes of macromolecules, and high complexity of the cellular environment. Subtomogram structural classification is an essential step for such task. Although acquisition of large amounts of subtomograms is no longer an obstacle due to advances in automation of data collection, obtaining the same number of structural labels is both computation and labor intensive. On the other hand, existing deep learning based supervised classification approaches are highly demanding on labeled data and have limited ability to learn about new structures rapidly from data containing very few labels of such new structures. In this work, we propose a novel approach for subtomogram classification based on few-shot learning. With our approach, classification of unseen structures in the training data can be conducted given few labeled samples in test data through instance embedding. Experiments were performed on both simulated and real datasets. Our experimental results show that we can make inference on new structures given only five labeled samples for each class with a competitive accuracy (> 0.86 on the simulated dataset with SNR = 0.1), or even one sample with an accuracy of 0.7644. The results on real datasets are also promising with accuracy > 0.9 on both conditions and even up to 1 on one of the real datasets. Our approach achieves significant improvement compared with the baseline method and has strong capabilities of generalizing to other cellular components." @default.
- W3099589024 created "2020-11-23" @default.
- W3099589024 creator A5000807861 @default.
- W3099589024 creator A5009607229 @default.
- W3099589024 creator A5017777141 @default.
- W3099589024 creator A5035154955 @default.
- W3099589024 creator A5048425561 @default.
- W3099589024 creator A5053929596 @default.
- W3099589024 creator A5068176076 @default.
- W3099589024 creator A5077353554 @default.
- W3099589024 creator A5085149886 @default.
- W3099589024 creator A5086172600 @default.
- W3099589024 date "2020-11-11" @default.
- W3099589024 modified "2023-10-02" @default.
- W3099589024 title "Few-shot learning for classification of novel macromolecular structures in cryo-electron tomograms" @default.
- W3099589024 cites W1985983127 @default.
- W3099589024 cites W2014706038 @default.
- W3099589024 cites W2017292564 @default.
- W3099589024 cites W2020435927 @default.
- W3099589024 cites W2042455841 @default.
- W3099589024 cites W2084236090 @default.
- W3099589024 cites W2095300452 @default.
- W3099589024 cites W2097360713 @default.
- W3099589024 cites W2130479394 @default.
- W3099589024 cites W2168857415 @default.
- W3099589024 cites W2175730676 @default.
- W3099589024 cites W2265299935 @default.
- W3099589024 cites W2297140690 @default.
- W3099589024 cites W2591330651 @default.
- W3099589024 cites W2787027993 @default.
- W3099589024 cites W2949882099 @default.
- W3099589024 cites W3122807430 @default.
- W3099589024 doi "https://doi.org/10.1371/journal.pcbi.1008227" @default.
- W3099589024 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7682871" @default.
- W3099589024 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33175839" @default.
- W3099589024 hasPublicationYear "2020" @default.
- W3099589024 type Work @default.
- W3099589024 sameAs 3099589024 @default.
- W3099589024 citedByCount "6" @default.
- W3099589024 countsByYear W30995890242021 @default.
- W3099589024 countsByYear W30995890242022 @default.
- W3099589024 countsByYear W30995890242023 @default.
- W3099589024 crossrefType "journal-article" @default.
- W3099589024 hasAuthorship W3099589024A5000807861 @default.
- W3099589024 hasAuthorship W3099589024A5009607229 @default.
- W3099589024 hasAuthorship W3099589024A5017777141 @default.
- W3099589024 hasAuthorship W3099589024A5035154955 @default.
- W3099589024 hasAuthorship W3099589024A5048425561 @default.
- W3099589024 hasAuthorship W3099589024A5053929596 @default.
- W3099589024 hasAuthorship W3099589024A5068176076 @default.
- W3099589024 hasAuthorship W3099589024A5077353554 @default.
- W3099589024 hasAuthorship W3099589024A5085149886 @default.
- W3099589024 hasAuthorship W3099589024A5086172600 @default.
- W3099589024 hasBestOaLocation W30995890241 @default.
- W3099589024 hasConcept C111919701 @default.
- W3099589024 hasConcept C115901376 @default.
- W3099589024 hasConcept C119857082 @default.
- W3099589024 hasConcept C120665830 @default.
- W3099589024 hasConcept C121332964 @default.
- W3099589024 hasConcept C124101348 @default.
- W3099589024 hasConcept C127413603 @default.
- W3099589024 hasConcept C153180895 @default.
- W3099589024 hasConcept C154945302 @default.
- W3099589024 hasConcept C163716698 @default.
- W3099589024 hasConcept C163985040 @default.
- W3099589024 hasConcept C20702342 @default.
- W3099589024 hasConcept C2776214188 @default.
- W3099589024 hasConcept C2777993257 @default.
- W3099589024 hasConcept C36464697 @default.
- W3099589024 hasConcept C41008148 @default.
- W3099589024 hasConcept C55493867 @default.
- W3099589024 hasConcept C78519656 @default.
- W3099589024 hasConcept C86803240 @default.
- W3099589024 hasConceptScore W3099589024C111919701 @default.
- W3099589024 hasConceptScore W3099589024C115901376 @default.
- W3099589024 hasConceptScore W3099589024C119857082 @default.
- W3099589024 hasConceptScore W3099589024C120665830 @default.
- W3099589024 hasConceptScore W3099589024C121332964 @default.
- W3099589024 hasConceptScore W3099589024C124101348 @default.
- W3099589024 hasConceptScore W3099589024C127413603 @default.
- W3099589024 hasConceptScore W3099589024C153180895 @default.
- W3099589024 hasConceptScore W3099589024C154945302 @default.
- W3099589024 hasConceptScore W3099589024C163716698 @default.
- W3099589024 hasConceptScore W3099589024C163985040 @default.
- W3099589024 hasConceptScore W3099589024C20702342 @default.
- W3099589024 hasConceptScore W3099589024C2776214188 @default.
- W3099589024 hasConceptScore W3099589024C2777993257 @default.
- W3099589024 hasConceptScore W3099589024C36464697 @default.
- W3099589024 hasConceptScore W3099589024C41008148 @default.
- W3099589024 hasConceptScore W3099589024C55493867 @default.
- W3099589024 hasConceptScore W3099589024C78519656 @default.
- W3099589024 hasConceptScore W3099589024C86803240 @default.
- W3099589024 hasFunder F4320306076 @default.
- W3099589024 hasFunder F4320322320 @default.
- W3099589024 hasFunder F4320322392 @default.
- W3099589024 hasFunder F4320332161 @default.
- W3099589024 hasIssue "11" @default.
- W3099589024 hasLocation W30995890241 @default.