Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099595508> ?p ?o ?g. }
- W3099595508 endingPage "9" @default.
- W3099595508 startingPage "9" @default.
- W3099595508 abstract "What are the roles of central and peripheral vision in human scene recognition? Larson and Loschky (2009) showed that peripheral vision contributes more than central vision in obtaining maximum scene recognition accuracy. However, central vision is more efficient for scene recognition than peripheral, based on the amount of visual area needed for accurate recognition. In this study, we model and explain the results of Larson and Loschky (2009) using a neurocomputational modeling approach. We show that the advantage of peripheral vision in scene recognition, as well as the efficiency advantage for central vision, can be replicated using state-of-the-art deep neural network models. In addition, we propose and provide support for the hypothesis that the peripheral advantage comes from the inherent usefulness of peripheral features. This result is consistent with data presented by Thibaut, Tran, Szaffarczyk, and Boucart (2014), who showed that patients with central vision loss can still categorize natural scenes efficiently. Furthermore, by using a deep mixture-of-experts model (The Deep Model, or TDM) that receives central and peripheral visual information on separate channels simultaneously, we show that the peripheral advantage emerges naturally in the learning process: When trained to categorize scenes, the model weights the peripheral pathway more than the central pathway. As we have seen in our previous modeling work, learning creates a transform that spreads different scene categories into different regions in representational space. Finally, we visualize the features for the two pathways, and find that different preferences for scene categories emerge for the two pathways during the training process." @default.
- W3099595508 created "2020-11-23" @default.
- W3099595508 creator A5005315243 @default.
- W3099595508 creator A5065994253 @default.
- W3099595508 date "2017-06-12" @default.
- W3099595508 modified "2023-09-26" @default.
- W3099595508 title "Central and peripheral vision for scene recognition: A neurocomputational modeling exploration" @default.
- W3099595508 cites W144689751 @default.
- W3099595508 cites W1493030254 @default.
- W3099595508 cites W1512853168 @default.
- W3099595508 cites W1521721734 @default.
- W3099595508 cites W1554663460 @default.
- W3099595508 cites W1566135517 @default.
- W3099595508 cites W1603101684 @default.
- W3099595508 cites W1606787960 @default.
- W3099595508 cites W1619178479 @default.
- W3099595508 cites W1715013381 @default.
- W3099595508 cites W1849277567 @default.
- W3099595508 cites W1933717971 @default.
- W3099595508 cites W1965686001 @default.
- W3099595508 cites W1984891974 @default.
- W3099595508 cites W1998950974 @default.
- W3099595508 cites W2003386556 @default.
- W3099595508 cites W2005059986 @default.
- W3099595508 cites W2007035275 @default.
- W3099595508 cites W2011937936 @default.
- W3099595508 cites W2014275686 @default.
- W3099595508 cites W2015020771 @default.
- W3099595508 cites W2016053056 @default.
- W3099595508 cites W2018798827 @default.
- W3099595508 cites W2022251150 @default.
- W3099595508 cites W2025673628 @default.
- W3099595508 cites W2031291636 @default.
- W3099595508 cites W2032834825 @default.
- W3099595508 cites W2039225803 @default.
- W3099595508 cites W2040253108 @default.
- W3099595508 cites W2043687537 @default.
- W3099595508 cites W2043999457 @default.
- W3099595508 cites W2044305824 @default.
- W3099595508 cites W2046155915 @default.
- W3099595508 cites W2047482416 @default.
- W3099595508 cites W2049611598 @default.
- W3099595508 cites W2055439516 @default.
- W3099595508 cites W2058616551 @default.
- W3099595508 cites W2061934117 @default.
- W3099595508 cites W2062787021 @default.
- W3099595508 cites W2063515709 @default.
- W3099595508 cites W2066915950 @default.
- W3099595508 cites W2067822548 @default.
- W3099595508 cites W2081803458 @default.
- W3099595508 cites W2087044777 @default.
- W3099595508 cites W2087344433 @default.
- W3099595508 cites W2088150485 @default.
- W3099595508 cites W2088754246 @default.
- W3099595508 cites W2090530556 @default.
- W3099595508 cites W2090611820 @default.
- W3099595508 cites W2096391334 @default.
- W3099595508 cites W2097295641 @default.
- W3099595508 cites W2108069432 @default.
- W3099595508 cites W2112180451 @default.
- W3099595508 cites W2113518940 @default.
- W3099595508 cites W2115113692 @default.
- W3099595508 cites W2115905020 @default.
- W3099595508 cites W2118979017 @default.
- W3099595508 cites W2123341385 @default.
- W3099595508 cites W2124544892 @default.
- W3099595508 cites W2125935651 @default.
- W3099595508 cites W2129071654 @default.
- W3099595508 cites W2130751949 @default.
- W3099595508 cites W2133589685 @default.
- W3099595508 cites W2134008461 @default.
- W3099595508 cites W2134670479 @default.
- W3099595508 cites W2137228043 @default.
- W3099595508 cites W2138874178 @default.
- W3099595508 cites W2143709903 @default.
- W3099595508 cites W2144714250 @default.
- W3099595508 cites W2145287260 @default.
- W3099595508 cites W2145291811 @default.
- W3099595508 cites W2145668416 @default.
- W3099595508 cites W2153156486 @default.
- W3099595508 cites W2161314167 @default.
- W3099595508 cites W2165680558 @default.
- W3099595508 cites W2166206801 @default.
- W3099595508 cites W2220577226 @default.
- W3099595508 cites W2252392167 @default.
- W3099595508 cites W2252435233 @default.
- W3099595508 cites W2266248314 @default.
- W3099595508 cites W2274405424 @default.
- W3099595508 cites W2292510500 @default.
- W3099595508 cites W2295230160 @default.
- W3099595508 cites W2311029216 @default.
- W3099595508 cites W2323991236 @default.
- W3099595508 cites W2394929636 @default.
- W3099595508 cites W246507125 @default.
- W3099595508 cites W2525440182 @default.
- W3099595508 cites W2551273798 @default.
- W3099595508 cites W2558231299 @default.
- W3099595508 cites W2618530766 @default.