Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099687624> ?p ?o ?g. }
- W3099687624 endingPage "393001" @default.
- W3099687624 startingPage "393001" @default.
- W3099687624 abstract "This review explains the relationship between density functional theory and strongly correlated models using the simplest possible example, the two-site Hubbard model. The relationship to traditional quantum chemistry is included. Even in this elementary example, where the exact ground-state energy and site occupations can be found analytically, there is much to be explained in terms of the underlying logic and aims of density functional theory. Although the usual solution is analytic, the density functional is given only implicitly. We overcome this difficulty using the Levy-Lieb construction to create a parametrization of the exact function with negligible errors. The symmetric case is most commonly studied, but we find a rich variation in behavior by including asymmetry, as strong correlation physics vies with charge-transfer effects. We explore the behavior of the gap and the many-body Green's function, demonstrating the 'failure' of the Kohn-Sham (KS) method to reproduce the fundamental gap. We perform benchmark calculations of the occupation and components of the KS potentials, the correlation kinetic energies, and the adiabatic connection. We test several approximate functionals (restricted and unrestricted Hartree-Fock and Bethe ansatz local density approximation) to show their successes and limitations. We also discuss and illustrate the concept of the derivative discontinuity. Useful appendices include analytic expressions for density functional energy components, several limits of the exact functional (weak- and strong-coupling, symmetric and asymmetric), various adiabatic connection results, proofs of exact conditions for this model, and the origin of the Hubbard model from a minimal basis model for stretched H2." @default.
- W3099687624 created "2020-11-23" @default.
- W3099687624 creator A5027027559 @default.
- W3099687624 creator A5074626953 @default.
- W3099687624 creator A5074732386 @default.
- W3099687624 creator A5082307304 @default.
- W3099687624 date "2015-09-18" @default.
- W3099687624 modified "2023-10-17" @default.
- W3099687624 title "The Hubbard dimer: a density functional case study of a many-body problem" @default.
- W3099687624 cites W1493357918 @default.
- W3099687624 cites W1497069881 @default.
- W3099687624 cites W1524525881 @default.
- W3099687624 cites W1535202610 @default.
- W3099687624 cites W1601357266 @default.
- W3099687624 cites W1654278279 @default.
- W3099687624 cites W1658385247 @default.
- W3099687624 cites W1662324282 @default.
- W3099687624 cites W1717338174 @default.
- W3099687624 cites W1728120166 @default.
- W3099687624 cites W1806543486 @default.
- W3099687624 cites W1840376913 @default.
- W3099687624 cites W1930812597 @default.
- W3099687624 cites W1964526321 @default.
- W3099687624 cites W1964559160 @default.
- W3099687624 cites W1968074770 @default.
- W3099687624 cites W1968433849 @default.
- W3099687624 cites W1969600957 @default.
- W3099687624 cites W1970512969 @default.
- W3099687624 cites W1971472669 @default.
- W3099687624 cites W1972271262 @default.
- W3099687624 cites W1972584495 @default.
- W3099687624 cites W1972992751 @default.
- W3099687624 cites W1973115470 @default.
- W3099687624 cites W1973383114 @default.
- W3099687624 cites W1973618667 @default.
- W3099687624 cites W1973663126 @default.
- W3099687624 cites W1974078476 @default.
- W3099687624 cites W1974755878 @default.
- W3099687624 cites W1975523411 @default.
- W3099687624 cites W1976208616 @default.
- W3099687624 cites W1976952226 @default.
- W3099687624 cites W1977301423 @default.
- W3099687624 cites W1977462511 @default.
- W3099687624 cites W1977700257 @default.
- W3099687624 cites W1978215016 @default.
- W3099687624 cites W1978365214 @default.
- W3099687624 cites W1980216394 @default.
- W3099687624 cites W1980438315 @default.
- W3099687624 cites W1980667009 @default.
- W3099687624 cites W1981368803 @default.
- W3099687624 cites W1983522715 @default.
- W3099687624 cites W1984771393 @default.
- W3099687624 cites W1985986764 @default.
- W3099687624 cites W1986892587 @default.
- W3099687624 cites W1987551102 @default.
- W3099687624 cites W1987792759 @default.
- W3099687624 cites W1987867582 @default.
- W3099687624 cites W1988150410 @default.
- W3099687624 cites W1989256479 @default.
- W3099687624 cites W1989336284 @default.
- W3099687624 cites W1990451100 @default.
- W3099687624 cites W1990713268 @default.
- W3099687624 cites W1991591703 @default.
- W3099687624 cites W1992942299 @default.
- W3099687624 cites W1993078746 @default.
- W3099687624 cites W1993357810 @default.
- W3099687624 cites W1995056521 @default.
- W3099687624 cites W1995070176 @default.
- W3099687624 cites W1996082548 @default.
- W3099687624 cites W1996650018 @default.
- W3099687624 cites W1996979891 @default.
- W3099687624 cites W1997311743 @default.
- W3099687624 cites W1998807253 @default.
- W3099687624 cites W1999439035 @default.
- W3099687624 cites W2000500972 @default.
- W3099687624 cites W2000686263 @default.
- W3099687624 cites W2002891559 @default.
- W3099687624 cites W2002921044 @default.
- W3099687624 cites W2003251109 @default.
- W3099687624 cites W2003401816 @default.
- W3099687624 cites W2005671614 @default.
- W3099687624 cites W2007553616 @default.
- W3099687624 cites W2007695974 @default.
- W3099687624 cites W2007805650 @default.
- W3099687624 cites W2008041424 @default.
- W3099687624 cites W2008423326 @default.
- W3099687624 cites W2009606037 @default.
- W3099687624 cites W2009867601 @default.
- W3099687624 cites W2010785223 @default.
- W3099687624 cites W2011002850 @default.
- W3099687624 cites W2011493928 @default.
- W3099687624 cites W2012286663 @default.
- W3099687624 cites W2012458244 @default.
- W3099687624 cites W2014452297 @default.
- W3099687624 cites W2014519943 @default.
- W3099687624 cites W2015865951 @default.
- W3099687624 cites W2016897276 @default.
- W3099687624 cites W2017425597 @default.