Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099691892> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W3099691892 endingPage "116" @default.
- W3099691892 startingPage "100" @default.
- W3099691892 abstract "In this article we propose a novel MCMC method based on deterministic transformations T: X×D→X where X is the state-space and D is some set which may or may not be a subset of X. We refer to our new methodology as Transformation-based Markov chain Monte Carlo (TMCMC). One of the remarkable advantages of our proposal is that even if the underlying target distribution is very high-dimensional, deterministic transformation of a one-dimensional random variable is sufficient to generate an appropriate Markov chain that is guaranteed to converge to the high-dimensional target distribution. Apart from clearly leading to massive computational savings, this idea of deterministically transforming a single random variable very generally leads to excellent acceptance rates, even though all the random variables associated with the high-dimensional target distribution are updated in a single block. Since it is well-known that joint updating of many random variables using the Metropolis–Hastings (MH) algorithm generally leads to poor acceptance rates, TMCMC, in this regard, seems to provide a significant advance. We validate our proposal theoretically, establishing the convergence properties. Furthermore, we show that TMCMC can be very effectively adopted for simulating from doubly intractable distributions. We show that TMCMC includes hybrid Monte Carlo (HMC) as a special case. We also contrast TMCMC with the generalized Gibbs and Metropolis methods of Liu and Yu (1999) [15], Liu and Sabatti (2000) [14] and Kou et al. (2005) [11], pointing out that even though the latter also uses transformations, their goal is to seek improvement of the standard Gibbs and Metropolis–Hastings algorithms by adding a transformation-based step, while TMCMC is an altogether new and general methodology for simulating from intractable, particularly, high-dimensional distributions. TMCMC is compared with MH using the well-known Challenger data, demonstrating the effectiveness of the former in the case of highly correlated variables. Moreover, we apply our methodology to a challenging posterior simulation problem associated with the geostatistical model of Diggle et al. (1998) [7], updating 160 unknown parameters jointly, using a deterministic transformation of a one-dimensional random variable. Remarkable computational savings as well as good convergence properties and acceptance rates are the results." @default.
- W3099691892 created "2020-11-23" @default.
- W3099691892 creator A5021207606 @default.
- W3099691892 creator A5073403589 @default.
- W3099691892 date "2014-01-01" @default.
- W3099691892 modified "2023-09-23" @default.
- W3099691892 title "Markov chain Monte Carlo based on deterministic transformations" @default.
- W3099691892 cites W1975633784 @default.
- W3099691892 cites W1984048068 @default.
- W3099691892 cites W2047014016 @default.
- W3099691892 cites W2048648896 @default.
- W3099691892 cites W2098601118 @default.
- W3099691892 cites W2141273398 @default.
- W3099691892 cites W2144898279 @default.
- W3099691892 cites W2167943787 @default.
- W3099691892 cites W3103537158 @default.
- W3099691892 doi "https://doi.org/10.1016/j.stamet.2013.08.006" @default.
- W3099691892 hasPublicationYear "2014" @default.
- W3099691892 type Work @default.
- W3099691892 sameAs 3099691892 @default.
- W3099691892 citedByCount "42" @default.
- W3099691892 countsByYear W30996918922013 @default.
- W3099691892 countsByYear W30996918922014 @default.
- W3099691892 countsByYear W30996918922015 @default.
- W3099691892 countsByYear W30996918922016 @default.
- W3099691892 countsByYear W30996918922017 @default.
- W3099691892 countsByYear W30996918922018 @default.
- W3099691892 countsByYear W30996918922019 @default.
- W3099691892 countsByYear W30996918922020 @default.
- W3099691892 countsByYear W30996918922021 @default.
- W3099691892 countsByYear W30996918922023 @default.
- W3099691892 crossrefType "journal-article" @default.
- W3099691892 hasAuthorship W3099691892A5021207606 @default.
- W3099691892 hasAuthorship W3099691892A5073403589 @default.
- W3099691892 hasBestOaLocation W30996918922 @default.
- W3099691892 hasConcept C104317684 @default.
- W3099691892 hasConcept C105795698 @default.
- W3099691892 hasConcept C111350023 @default.
- W3099691892 hasConcept C11413529 @default.
- W3099691892 hasConcept C121332964 @default.
- W3099691892 hasConcept C121864883 @default.
- W3099691892 hasConcept C122123141 @default.
- W3099691892 hasConcept C126255220 @default.
- W3099691892 hasConcept C13153151 @default.
- W3099691892 hasConcept C162324750 @default.
- W3099691892 hasConcept C185592680 @default.
- W3099691892 hasConcept C187192777 @default.
- W3099691892 hasConcept C19499675 @default.
- W3099691892 hasConcept C204241405 @default.
- W3099691892 hasConcept C204693719 @default.
- W3099691892 hasConcept C2777303404 @default.
- W3099691892 hasConcept C28826006 @default.
- W3099691892 hasConcept C33923547 @default.
- W3099691892 hasConcept C50522688 @default.
- W3099691892 hasConcept C55493867 @default.
- W3099691892 hasConcept C98763669 @default.
- W3099691892 hasConceptScore W3099691892C104317684 @default.
- W3099691892 hasConceptScore W3099691892C105795698 @default.
- W3099691892 hasConceptScore W3099691892C111350023 @default.
- W3099691892 hasConceptScore W3099691892C11413529 @default.
- W3099691892 hasConceptScore W3099691892C121332964 @default.
- W3099691892 hasConceptScore W3099691892C121864883 @default.
- W3099691892 hasConceptScore W3099691892C122123141 @default.
- W3099691892 hasConceptScore W3099691892C126255220 @default.
- W3099691892 hasConceptScore W3099691892C13153151 @default.
- W3099691892 hasConceptScore W3099691892C162324750 @default.
- W3099691892 hasConceptScore W3099691892C185592680 @default.
- W3099691892 hasConceptScore W3099691892C187192777 @default.
- W3099691892 hasConceptScore W3099691892C19499675 @default.
- W3099691892 hasConceptScore W3099691892C204241405 @default.
- W3099691892 hasConceptScore W3099691892C204693719 @default.
- W3099691892 hasConceptScore W3099691892C2777303404 @default.
- W3099691892 hasConceptScore W3099691892C28826006 @default.
- W3099691892 hasConceptScore W3099691892C33923547 @default.
- W3099691892 hasConceptScore W3099691892C50522688 @default.
- W3099691892 hasConceptScore W3099691892C55493867 @default.
- W3099691892 hasConceptScore W3099691892C98763669 @default.
- W3099691892 hasLocation W30996918921 @default.
- W3099691892 hasLocation W30996918922 @default.
- W3099691892 hasLocation W30996918923 @default.
- W3099691892 hasOpenAccess W3099691892 @default.
- W3099691892 hasPrimaryLocation W30996918921 @default.
- W3099691892 hasRelatedWork W1482570420 @default.
- W3099691892 hasRelatedWork W1526488073 @default.
- W3099691892 hasRelatedWork W2047834101 @default.
- W3099691892 hasRelatedWork W2108651330 @default.
- W3099691892 hasRelatedWork W2281364703 @default.
- W3099691892 hasRelatedWork W2941443959 @default.
- W3099691892 hasRelatedWork W2954195874 @default.
- W3099691892 hasRelatedWork W4213170070 @default.
- W3099691892 hasRelatedWork W4226314133 @default.
- W3099691892 hasRelatedWork W4317941514 @default.
- W3099691892 hasVolume "16" @default.
- W3099691892 isParatext "false" @default.
- W3099691892 isRetracted "false" @default.
- W3099691892 magId "3099691892" @default.
- W3099691892 workType "article" @default.