Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099696119> ?p ?o ?g. }
- W3099696119 endingPage "044705" @default.
- W3099696119 startingPage "044705" @default.
- W3099696119 abstract "Effective low-energy Hamiltonians for several different families of iron-based superconductors are compared after deriving them from the downfolding scheme based on first-principles calculations. Systematic dependences of the derived model parameters on the families are elucidated, many of which are understood from the systematic variation of the covalency between Fe-3 d and pnictogen-/chalcogen- p orbitals. First, LaFePO, LaFeAsO (1111), BaFe 2 As 2 (122), LiFeAs (111), FeSe, and FeTe (11) have overall similar band structures near the Fermi level, where the total widths of 10-fold Fe-3 d bands are mostly around 4.5 eV. However, the derived effective models of the 10-fold Fe-3 d bands ( d model) for FeSe and FeTe have substantially larger effective onsite Coulomb interactions U ∼4.2 and 3.4 eV, respectively, after the screening by electrons on other bands and after averaging over orbitals, as compared to ∼2.5 eV for LaFeAsO. The difference is similar in the effective models containing p orbitals of As, Se or Te ( d p or d p p model), where U ranges from ∼4 eV for the 1111 family to ∼7 eV for the 11 family. The exchange interaction J has a similar tendency. The family dependence of models indicates a wide variation ranging from weak correlation regime (LaFePO) to substantially strong correlation regime (FeSe). The origin of the larger effective interaction in the 11 family is ascribed to smaller spread of the Wannier orbitals generating larger bare interaction, and to fewer screening channels by the other bands. This variation is primarily derived from the distance h between the pnictogen/chalcogen position and the Fe layer: The longer h for the 11 family generates more ionic character of the bonding between iron and anion atoms, while the shorter h for the 1111 family leads to more covalent-bonding character, the larger spread of the Wannier orbitals, and more efficient screening by the anion p orbitals. The screened interaction of the d model is strongly orbital dependent, which is also understood from the Wannier spread. The d p and d p p models show much weaker orbital dependence. The larger h also explains why the 10-fold 3 d bands for the 11 family are more entangled with the smearing of the “pseudogap” structure above the Fermi level seen in the 1111 family. While the family-dependent semimetallic splitting of the bands primarily consists of d y z / d z x and d x 2 - y 2 orbitals, the size of the pseudogap structure is controlled by the hybridization between these orbitals and d x y / d 3 z 2 - r 2 : A large hybridization in the 1111 family generates a large “band-insulating”-like pseudogap ( hybridization gap ), whereas a large h in the 11 family weakens them, resulting in a “half-filled” like bands of orbitals. This may enhance strong correlation effects in analogy with Mott physics and causes the orbital selective crossover in the three orbitals. On the other hand, the geometrical frustration t '/ t , inferred from the ratio of the next-nearest transfer t ' to the nearest one t of the d model is relatively larger for the 1111 family than the 11 one. The models comprehensively derived here may serve as a firm starting basis of understanding both common and diverse properties of the iron-based superconductors including magnetism and superconductivity." @default.
- W3099696119 created "2020-11-23" @default.
- W3099696119 creator A5008252775 @default.
- W3099696119 creator A5019720373 @default.
- W3099696119 creator A5043382042 @default.
- W3099696119 creator A5086995576 @default.
- W3099696119 date "2010-04-15" @default.
- W3099696119 modified "2023-10-01" @default.
- W3099696119 title "Comparison of <i>Ab initio</i> Low-Energy Models for LaFePO, LaFeAsO, BaFe<sub>2</sub>As<sub>2</sub>, LiFeAs, FeSe, and FeTe: Electron Correlation and Covalency" @default.
- W3099696119 cites W1487011090 @default.
- W3099696119 cites W1488555567 @default.
- W3099696119 cites W1498034402 @default.
- W3099696119 cites W1521105907 @default.
- W3099696119 cites W1524207391 @default.
- W3099696119 cites W1527622477 @default.
- W3099696119 cites W1569240515 @default.
- W3099696119 cites W1600011230 @default.
- W3099696119 cites W1601316960 @default.
- W3099696119 cites W1659501886 @default.
- W3099696119 cites W1662031871 @default.
- W3099696119 cites W1705631034 @default.
- W3099696119 cites W1818476578 @default.
- W3099696119 cites W1928959745 @default.
- W3099696119 cites W1940299161 @default.
- W3099696119 cites W1945316653 @default.
- W3099696119 cites W1970254727 @default.
- W3099696119 cites W1971212666 @default.
- W3099696119 cites W1972045032 @default.
- W3099696119 cites W1972871080 @default.
- W3099696119 cites W1980936552 @default.
- W3099696119 cites W1984086045 @default.
- W3099696119 cites W1999354566 @default.
- W3099696119 cites W2000596750 @default.
- W3099696119 cites W2001519974 @default.
- W3099696119 cites W2002360413 @default.
- W3099696119 cites W2005099317 @default.
- W3099696119 cites W2007082889 @default.
- W3099696119 cites W2010127434 @default.
- W3099696119 cites W2011721578 @default.
- W3099696119 cites W2014094922 @default.
- W3099696119 cites W2016676682 @default.
- W3099696119 cites W2019575955 @default.
- W3099696119 cites W2022761082 @default.
- W3099696119 cites W2022937698 @default.
- W3099696119 cites W2026573456 @default.
- W3099696119 cites W2026907619 @default.
- W3099696119 cites W2029603554 @default.
- W3099696119 cites W2030976617 @default.
- W3099696119 cites W2032182619 @default.
- W3099696119 cites W2032980114 @default.
- W3099696119 cites W2034090401 @default.
- W3099696119 cites W2034562189 @default.
- W3099696119 cites W2042430601 @default.
- W3099696119 cites W2044068753 @default.
- W3099696119 cites W2045596260 @default.
- W3099696119 cites W2049079467 @default.
- W3099696119 cites W2049172388 @default.
- W3099696119 cites W2050672256 @default.
- W3099696119 cites W2052726460 @default.
- W3099696119 cites W2055640329 @default.
- W3099696119 cites W2057484842 @default.
- W3099696119 cites W2071545965 @default.
- W3099696119 cites W2073917441 @default.
- W3099696119 cites W2089260998 @default.
- W3099696119 cites W2095600149 @default.
- W3099696119 cites W2095672605 @default.
- W3099696119 cites W2101288517 @default.
- W3099696119 cites W2121448251 @default.
- W3099696119 cites W2164805481 @default.
- W3099696119 cites W2165977892 @default.
- W3099696119 cites W2171395969 @default.
- W3099696119 cites W2171897353 @default.
- W3099696119 cites W2230728100 @default.
- W3099696119 cites W2261970498 @default.
- W3099696119 cites W2918289790 @default.
- W3099696119 cites W3023127551 @default.
- W3099696119 cites W3098070891 @default.
- W3099696119 cites W3098175039 @default.
- W3099696119 cites W3101656392 @default.
- W3099696119 cites W3102006932 @default.
- W3099696119 cites W3104372770 @default.
- W3099696119 cites W3105069427 @default.
- W3099696119 cites W3105354793 @default.
- W3099696119 cites W3105721009 @default.
- W3099696119 cites W3106212270 @default.
- W3099696119 cites W3123707006 @default.
- W3099696119 cites W3125023961 @default.
- W3099696119 cites W48484038 @default.
- W3099696119 cites W52192553 @default.
- W3099696119 doi "https://doi.org/10.1143/jpsj.79.044705" @default.
- W3099696119 hasPublicationYear "2010" @default.
- W3099696119 type Work @default.
- W3099696119 sameAs 3099696119 @default.
- W3099696119 citedByCount "288" @default.
- W3099696119 countsByYear W30996961192012 @default.
- W3099696119 countsByYear W30996961192013 @default.
- W3099696119 countsByYear W30996961192014 @default.
- W3099696119 countsByYear W30996961192015 @default.