Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099698257> ?p ?o ?g. }
- W3099698257 endingPage "141" @default.
- W3099698257 startingPage "136" @default.
- W3099698257 abstract "Purpose This work aimed to explore whether radiomic features on magnetic resonance diffusion weighted image (MR DWI) can be used to identify triple-negative breast cancer (TNBC) and other subtypes (non-TNBC). Materials and methods This retrospective study included 221 unilateral patients who underwent breast MR imaging prior to neoadjuvant chemotherapy. The subtypes of breast cancer include luminal A (n = 63), luminal B (n = 103), human epidermal growth factor receptor-2 (HER2) overexpressing (n = 30), and triple negative (n = 25). Radiomic features were extracted using Omini-Kinetic software on DWI. Student's t-test and Mann–Whitney U test were used to compare the features between TNBC and non-TNBC patients. Logistic regression analysis and receiver operating characteristic (ROC) curve were used to evaluate the diagnostic efficiency of radiomic features. The Fisher discriminant model was employed to distinguish TNBC and non-TNBC patients automatically. An additional validation dataset with 169 patients was utilized to validate the model. Results A total of 76 imaging features were extracted from each lesion on DWI images, and 12 radiomic features were statistically significant between TNBC and non-TNBC patients (P < 0.05). The area of receiver operating characteristic curve (AUC) was 0.817 to apply logistic regression analysis. The accuracy of Fisher discriminant model in distinguishing TNBC and non-TNBC patients was 95.4%, and leave-one-out cross validation was achieved with an accuracy of 83.7%. The same classification analysis of the validation dataset showed an accuracy of 83.4% and an AUC of 0.804. Conclusion Breast lesions exhibit differences in radiomic features from DWI, enabling good discrimination between TNBC and non-TNBC tumors." @default.
- W3099698257 created "2020-11-23" @default.
- W3099698257 creator A5009762178 @default.
- W3099698257 creator A5011291532 @default.
- W3099698257 creator A5029111322 @default.
- W3099698257 creator A5031873259 @default.
- W3099698257 creator A5041655588 @default.
- W3099698257 creator A5044273874 @default.
- W3099698257 creator A5059531436 @default.
- W3099698257 creator A5075228165 @default.
- W3099698257 creator A5081360289 @default.
- W3099698257 creator A5089696388 @default.
- W3099698257 date "2021-04-01" @default.
- W3099698257 modified "2023-10-17" @default.
- W3099698257 title "Radiomic analysis on magnetic resonance diffusion weighted image in distinguishing triple-negative breast cancer from other subtypes: a feasibility study" @default.
- W3099698257 cites W1739307575 @default.
- W3099698257 cites W1927185672 @default.
- W3099698257 cites W1971908929 @default.
- W3099698257 cites W1973196295 @default.
- W3099698257 cites W1974910032 @default.
- W3099698257 cites W1998646002 @default.
- W3099698257 cites W2000421853 @default.
- W3099698257 cites W2068184624 @default.
- W3099698257 cites W2070906186 @default.
- W3099698257 cites W2100240570 @default.
- W3099698257 cites W2101979288 @default.
- W3099698257 cites W2106764497 @default.
- W3099698257 cites W2124001141 @default.
- W3099698257 cites W2127365887 @default.
- W3099698257 cites W2129282465 @default.
- W3099698257 cites W2132893003 @default.
- W3099698257 cites W2142245422 @default.
- W3099698257 cites W2154142993 @default.
- W3099698257 cites W2157285286 @default.
- W3099698257 cites W2234908568 @default.
- W3099698257 cites W2259390591 @default.
- W3099698257 cites W2295468633 @default.
- W3099698257 cites W2313422996 @default.
- W3099698257 cites W2586494677 @default.
- W3099698257 cites W2590177834 @default.
- W3099698257 cites W2763032590 @default.
- W3099698257 cites W2780477573 @default.
- W3099698257 cites W2802614434 @default.
- W3099698257 cites W2902172882 @default.
- W3099698257 cites W2979115403 @default.
- W3099698257 doi "https://doi.org/10.1016/j.clinimag.2020.11.024" @default.
- W3099698257 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33242692" @default.
- W3099698257 hasPublicationYear "2021" @default.
- W3099698257 type Work @default.
- W3099698257 sameAs 3099698257 @default.
- W3099698257 citedByCount "14" @default.
- W3099698257 countsByYear W30996982572021 @default.
- W3099698257 countsByYear W30996982572022 @default.
- W3099698257 countsByYear W30996982572023 @default.
- W3099698257 crossrefType "journal-article" @default.
- W3099698257 hasAuthorship W3099698257A5009762178 @default.
- W3099698257 hasAuthorship W3099698257A5011291532 @default.
- W3099698257 hasAuthorship W3099698257A5029111322 @default.
- W3099698257 hasAuthorship W3099698257A5031873259 @default.
- W3099698257 hasAuthorship W3099698257A5041655588 @default.
- W3099698257 hasAuthorship W3099698257A5044273874 @default.
- W3099698257 hasAuthorship W3099698257A5059531436 @default.
- W3099698257 hasAuthorship W3099698257A5075228165 @default.
- W3099698257 hasAuthorship W3099698257A5081360289 @default.
- W3099698257 hasAuthorship W3099698257A5089696388 @default.
- W3099698257 hasConcept C121608353 @default.
- W3099698257 hasConcept C126322002 @default.
- W3099698257 hasConcept C126838900 @default.
- W3099698257 hasConcept C12868164 @default.
- W3099698257 hasConcept C143409427 @default.
- W3099698257 hasConcept C149550507 @default.
- W3099698257 hasConcept C151956035 @default.
- W3099698257 hasConcept C154945302 @default.
- W3099698257 hasConcept C191093355 @default.
- W3099698257 hasConcept C2777111374 @default.
- W3099698257 hasConcept C2780110267 @default.
- W3099698257 hasConcept C2780472235 @default.
- W3099698257 hasConcept C2989005 @default.
- W3099698257 hasConcept C41008148 @default.
- W3099698257 hasConcept C530470458 @default.
- W3099698257 hasConcept C58471807 @default.
- W3099698257 hasConcept C69738355 @default.
- W3099698257 hasConcept C70816921 @default.
- W3099698257 hasConcept C71924100 @default.
- W3099698257 hasConcept C76318530 @default.
- W3099698257 hasConceptScore W3099698257C121608353 @default.
- W3099698257 hasConceptScore W3099698257C126322002 @default.
- W3099698257 hasConceptScore W3099698257C126838900 @default.
- W3099698257 hasConceptScore W3099698257C12868164 @default.
- W3099698257 hasConceptScore W3099698257C143409427 @default.
- W3099698257 hasConceptScore W3099698257C149550507 @default.
- W3099698257 hasConceptScore W3099698257C151956035 @default.
- W3099698257 hasConceptScore W3099698257C154945302 @default.
- W3099698257 hasConceptScore W3099698257C191093355 @default.
- W3099698257 hasConceptScore W3099698257C2777111374 @default.
- W3099698257 hasConceptScore W3099698257C2780110267 @default.
- W3099698257 hasConceptScore W3099698257C2780472235 @default.
- W3099698257 hasConceptScore W3099698257C2989005 @default.