Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099698445> ?p ?o ?g. }
- W3099698445 abstract "Near-infrared (NIR) hyperspectroscopy becomes an emerging non-destructive sensing technology for inspection of crop seeds. A large spectral dataset of more than 140,000 wheat kernels in thirty varieties was prepared for classification. Feature selection is a critical segment in large spectral data analysis. A novel convolutional neural network-based feature selector (CNN-FS) was proposed to screen out deeply target-related spectral channels. A convolutional neural network with attention (CNN-ATT) framework was designed for one-dimension data classification. Popular machine learning models including support vector machine and partial least square discrimination analysis were used as the benchmark classifiers. Features selected by conventional feature selection algorithms were considered for comparison. Results showed that the designed CNN-ATT produced a higher performance than the compared classifier. The proposed CNN-FS found a subset of features, which made a better representation of raw dataset than conventional selectors did. The CNN-ATT achieved an accuracy of 93.01% using the full spectra, and keep its high precision (90.20%) by training on the 60-channel features obtained via the CNN-FS method. The proposed methods have great potential for handling the analyzing tasks on other large spectral datasets. The proposed feature selection structure can be extended to design other new model-based selectors. The combination of NIR hyper spectroscopic technology and the proposed models has great potential for automatic non-destructive classification of single wheat kernels." @default.
- W3099698445 created "2020-11-23" @default.
- W3099698445 creator A5011023121 @default.
- W3099698445 creator A5016628945 @default.
- W3099698445 creator A5033118514 @default.
- W3099698445 creator A5038500918 @default.
- W3099698445 creator A5066054326 @default.
- W3099698445 creator A5067078001 @default.
- W3099698445 creator A5089445344 @default.
- W3099698445 date "2020-11-10" @default.
- W3099698445 modified "2023-10-06" @default.
- W3099698445 title "Wheat Kernel Variety Identification Based on a Large Near-Infrared Spectral Dataset and a Novel Deep Learning-Based Feature Selection Method" @default.
- W3099698445 cites W1864421963 @default.
- W3099698445 cites W1975086762 @default.
- W3099698445 cites W1995991503 @default.
- W3099698445 cites W2012040418 @default.
- W3099698445 cites W2056132907 @default.
- W3099698445 cites W2085221526 @default.
- W3099698445 cites W2110620717 @default.
- W3099698445 cites W2133059825 @default.
- W3099698445 cites W2139212933 @default.
- W3099698445 cites W2148028862 @default.
- W3099698445 cites W2291011663 @default.
- W3099698445 cites W2527699128 @default.
- W3099698445 cites W2528585175 @default.
- W3099698445 cites W2562829635 @default.
- W3099698445 cites W2648850964 @default.
- W3099698445 cites W2767547957 @default.
- W3099698445 cites W2781128543 @default.
- W3099698445 cites W2788805965 @default.
- W3099698445 cites W2792511091 @default.
- W3099698445 cites W2792817593 @default.
- W3099698445 cites W2807326971 @default.
- W3099698445 cites W2886042776 @default.
- W3099698445 cites W2897761855 @default.
- W3099698445 cites W2898514383 @default.
- W3099698445 cites W2903593125 @default.
- W3099698445 cites W2916168844 @default.
- W3099698445 cites W2921016893 @default.
- W3099698445 cites W2930379364 @default.
- W3099698445 cites W2938728353 @default.
- W3099698445 cites W2943852858 @default.
- W3099698445 cites W2947246600 @default.
- W3099698445 cites W2965405319 @default.
- W3099698445 cites W2968460295 @default.
- W3099698445 cites W2971495873 @default.
- W3099698445 cites W2974140502 @default.
- W3099698445 cites W2974817990 @default.
- W3099698445 cites W2980200613 @default.
- W3099698445 cites W2980521503 @default.
- W3099698445 cites W2981805389 @default.
- W3099698445 cites W2989822559 @default.
- W3099698445 cites W2990763132 @default.
- W3099698445 cites W2999400086 @default.
- W3099698445 cites W3005083329 @default.
- W3099698445 cites W3009156058 @default.
- W3099698445 cites W4237011778 @default.
- W3099698445 doi "https://doi.org/10.3389/fpls.2020.575810" @default.
- W3099698445 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/7683420" @default.
- W3099698445 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/33240294" @default.
- W3099698445 hasPublicationYear "2020" @default.
- W3099698445 type Work @default.
- W3099698445 sameAs 3099698445 @default.
- W3099698445 citedByCount "27" @default.
- W3099698445 countsByYear W30996984452021 @default.
- W3099698445 countsByYear W30996984452022 @default.
- W3099698445 countsByYear W30996984452023 @default.
- W3099698445 crossrefType "journal-article" @default.
- W3099698445 hasAuthorship W3099698445A5011023121 @default.
- W3099698445 hasAuthorship W3099698445A5016628945 @default.
- W3099698445 hasAuthorship W3099698445A5033118514 @default.
- W3099698445 hasAuthorship W3099698445A5038500918 @default.
- W3099698445 hasAuthorship W3099698445A5066054326 @default.
- W3099698445 hasAuthorship W3099698445A5067078001 @default.
- W3099698445 hasAuthorship W3099698445A5089445344 @default.
- W3099698445 hasBestOaLocation W30996984451 @default.
- W3099698445 hasConcept C114614502 @default.
- W3099698445 hasConcept C119857082 @default.
- W3099698445 hasConcept C12267149 @default.
- W3099698445 hasConcept C13280743 @default.
- W3099698445 hasConcept C138885662 @default.
- W3099698445 hasConcept C148483581 @default.
- W3099698445 hasConcept C153180895 @default.
- W3099698445 hasConcept C154945302 @default.
- W3099698445 hasConcept C185798385 @default.
- W3099698445 hasConcept C205649164 @default.
- W3099698445 hasConcept C2776401178 @default.
- W3099698445 hasConcept C33923547 @default.
- W3099698445 hasConcept C41008148 @default.
- W3099698445 hasConcept C41895202 @default.
- W3099698445 hasConcept C70518039 @default.
- W3099698445 hasConcept C74193536 @default.
- W3099698445 hasConcept C81363708 @default.
- W3099698445 hasConcept C95623464 @default.
- W3099698445 hasConceptScore W3099698445C114614502 @default.
- W3099698445 hasConceptScore W3099698445C119857082 @default.
- W3099698445 hasConceptScore W3099698445C12267149 @default.
- W3099698445 hasConceptScore W3099698445C13280743 @default.
- W3099698445 hasConceptScore W3099698445C138885662 @default.
- W3099698445 hasConceptScore W3099698445C148483581 @default.