Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099702946> ?p ?o ?g. }
- W3099702946 abstract "Morphologies of red blood cells are normally interpreted by a pathologist. It is time-consuming and laborious. Furthermore, a misclassified red blood cell morphology will lead to false disease diagnosis and improper treatment. Thus, a decent pathologist must truly be an expert in classifying red blood cell morphology. In the past decade, many approaches have been proposed for classifying human red blood cell morphology. However, those approaches have not addressed the class imbalance problem in classification. A class imbalance problem---a problem where the numbers of samples in classes are very different---is one of the problems that can lead to a biased model towards the majority class. Due to the rarity of every type of abnormal blood cell morphology, the data from the collection process are usually imbalanced. In this study, we aimed to solve this problem specifically for classification of dog red blood cell morphology by using a Convolutional Neural Network (CNN)---a well-known deep learning technique---in conjunction with a focal loss function, adept at handling class imbalance problem. The proposed technique was conducted on a well-designed framework: two different CNNs were used to verify the effectiveness of the focal loss function and the optimal hyper-parameters were determined by 5-fold cross-validation. The experimental results show that both CNNs models augmented with the focal loss function achieved higher $F_{1}$-scores, compared to the models augmented with a conventional cross-entropy loss function that does not address class imbalance problem. In other words, the focal loss function truly enabled the CNNs models to be less biased towards the majority class than the cross-entropy did in the classification task of imbalanced dog red blood cell data." @default.
- W3099702946 created "2020-11-23" @default.
- W3099702946 creator A5024159147 @default.
- W3099702946 creator A5046907434 @default.
- W3099702946 creator A5066462028 @default.
- W3099702946 date "2020-02-15" @default.
- W3099702946 modified "2023-10-17" @default.
- W3099702946 title "Convolutional neural networks based focal loss for class imbalance problem: a case study of canine red blood cells morphology classification" @default.
- W3099702946 cites W1100975233 @default.
- W3099702946 cites W1885185971 @default.
- W3099702946 cites W1932847118 @default.
- W3099702946 cites W1941659294 @default.
- W3099702946 cites W1965895350 @default.
- W3099702946 cites W1974079881 @default.
- W3099702946 cites W2004226906 @default.
- W3099702946 cites W2008787844 @default.
- W3099702946 cites W2042042193 @default.
- W3099702946 cites W2054019556 @default.
- W3099702946 cites W2073484159 @default.
- W3099702946 cites W2076817280 @default.
- W3099702946 cites W2078622091 @default.
- W3099702946 cites W2087787741 @default.
- W3099702946 cites W2104933073 @default.
- W3099702946 cites W2106479238 @default.
- W3099702946 cites W2117539524 @default.
- W3099702946 cites W2119191234 @default.
- W3099702946 cites W2132791018 @default.
- W3099702946 cites W2148143831 @default.
- W3099702946 cites W2166704235 @default.
- W3099702946 cites W2194775991 @default.
- W3099702946 cites W2334028018 @default.
- W3099702946 cites W2338318698 @default.
- W3099702946 cites W2440599146 @default.
- W3099702946 cites W2462401346 @default.
- W3099702946 cites W2551429935 @default.
- W3099702946 cites W2551596518 @default.
- W3099702946 cites W2562319768 @default.
- W3099702946 cites W2592949994 @default.
- W3099702946 cites W2607941059 @default.
- W3099702946 cites W2734349601 @default.
- W3099702946 cites W2739179243 @default.
- W3099702946 cites W2751410528 @default.
- W3099702946 cites W2766119845 @default.
- W3099702946 cites W2767106145 @default.
- W3099702946 cites W2781292787 @default.
- W3099702946 cites W2803857835 @default.
- W3099702946 cites W2884561390 @default.
- W3099702946 cites W2890054934 @default.
- W3099702946 cites W2891686988 @default.
- W3099702946 cites W2898491665 @default.
- W3099702946 cites W2899419901 @default.
- W3099702946 cites W2900559790 @default.
- W3099702946 cites W2919115771 @default.
- W3099702946 cites W2919886931 @default.
- W3099702946 cites W2963446712 @default.
- W3099702946 cites W2963596856 @default.
- W3099702946 doi "https://doi.org/10.1007/s12652-020-01773-x" @default.
- W3099702946 hasPublicationYear "2020" @default.
- W3099702946 type Work @default.
- W3099702946 sameAs 3099702946 @default.
- W3099702946 citedByCount "34" @default.
- W3099702946 countsByYear W30997029462020 @default.
- W3099702946 countsByYear W30997029462021 @default.
- W3099702946 countsByYear W30997029462022 @default.
- W3099702946 countsByYear W30997029462023 @default.
- W3099702946 crossrefType "journal-article" @default.
- W3099702946 hasAuthorship W3099702946A5024159147 @default.
- W3099702946 hasAuthorship W3099702946A5046907434 @default.
- W3099702946 hasAuthorship W3099702946A5066462028 @default.
- W3099702946 hasBestOaLocation W30997029462 @default.
- W3099702946 hasConcept C11413529 @default.
- W3099702946 hasConcept C14036430 @default.
- W3099702946 hasConcept C153180895 @default.
- W3099702946 hasConcept C154945302 @default.
- W3099702946 hasConcept C41008148 @default.
- W3099702946 hasConcept C78458016 @default.
- W3099702946 hasConcept C81363708 @default.
- W3099702946 hasConcept C86803240 @default.
- W3099702946 hasConceptScore W3099702946C11413529 @default.
- W3099702946 hasConceptScore W3099702946C14036430 @default.
- W3099702946 hasConceptScore W3099702946C153180895 @default.
- W3099702946 hasConceptScore W3099702946C154945302 @default.
- W3099702946 hasConceptScore W3099702946C41008148 @default.
- W3099702946 hasConceptScore W3099702946C78458016 @default.
- W3099702946 hasConceptScore W3099702946C81363708 @default.
- W3099702946 hasConceptScore W3099702946C86803240 @default.
- W3099702946 hasLocation W30997029461 @default.
- W3099702946 hasLocation W30997029462 @default.
- W3099702946 hasLocation W30997029463 @default.
- W3099702946 hasOpenAccess W3099702946 @default.
- W3099702946 hasPrimaryLocation W30997029461 @default.
- W3099702946 hasRelatedWork W2735477435 @default.
- W3099702946 hasRelatedWork W2748454020 @default.
- W3099702946 hasRelatedWork W2767651786 @default.
- W3099702946 hasRelatedWork W2912288872 @default.
- W3099702946 hasRelatedWork W3016958897 @default.
- W3099702946 hasRelatedWork W3119610945 @default.
- W3099702946 hasRelatedWork W3181746755 @default.
- W3099702946 hasRelatedWork W4283379348 @default.
- W3099702946 hasRelatedWork W4312417841 @default.