Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099724835> ?p ?o ?g. }
- W3099724835 abstract "We present a significantly-improved data-driven global weather forecasting framework using a deep convolutional neural network (CNN) to forecast several basic atmospheric variables on a global grid. New developments in this framework include an offline volume-conservative mapping to a cubed-sphere grid, improvements to the CNN architecture, and the minimization of the loss function over multiple steps in a prediction sequence. The cubed-sphere remapping minimizes the distortion on the cube faces on which convolution operations are performed and provides natural boundary conditions for padding in the CNN. Our improved model produces weather forecasts that are indefinitely stable and produce realistic weather patterns at lead times of several weeks and longer. For short- to medium-range forecasting, our model significantly outperforms persistence, climatology, and a coarse-resolution dynamical numerical weather prediction (NWP) model. Unsurprisingly, our forecasts are worse than those from a high-resolution state-of-the-art operational NWP system. Our data-driven model is able to learn to forecast complex surface temperature patterns from few input atmospheric state variables. On annual time scales, our model produces a realistic seasonal cycle driven solely by the prescribed variation in top-of-atmosphere solar forcing. Although it is currently less accurate than operational weather forecasting models, our data-driven CNN executes much faster than those models, suggesting that machine learning could prove to be a valuable tool for large-ensemble forecasting." @default.
- W3099724835 created "2020-11-23" @default.
- W3099724835 creator A5013687804 @default.
- W3099724835 creator A5041836228 @default.
- W3099724835 creator A5083893060 @default.
- W3099724835 date "2020-09-01" @default.
- W3099724835 modified "2023-10-17" @default.
- W3099724835 title "Improving Data‐Driven Global Weather Prediction Using Deep Convolutional Neural Networks on a Cubed Sphere" @default.
- W3099724835 cites W1901129140 @default.
- W3099724835 cites W1975302688 @default.
- W3099724835 cites W1984206828 @default.
- W3099724835 cites W2055392263 @default.
- W3099724835 cites W2076247888 @default.
- W3099724835 cites W2159765473 @default.
- W3099724835 cites W2160203977 @default.
- W3099724835 cites W2404641003 @default.
- W3099724835 cites W2601923741 @default.
- W3099724835 cites W2604239613 @default.
- W3099724835 cites W2798665861 @default.
- W3099724835 cites W2801493395 @default.
- W3099724835 cites W2803408063 @default.
- W3099724835 cites W2808400960 @default.
- W3099724835 cites W2809789958 @default.
- W3099724835 cites W2895696451 @default.
- W3099724835 cites W2896006105 @default.
- W3099724835 cites W2900615125 @default.
- W3099724835 cites W2950210192 @default.
- W3099724835 cites W2952046647 @default.
- W3099724835 cites W2956255334 @default.
- W3099724835 cites W2962716998 @default.
- W3099724835 cites W2963973018 @default.
- W3099724835 cites W2965580012 @default.
- W3099724835 cites W2965752768 @default.
- W3099724835 cites W2970999468 @default.
- W3099724835 cites W2974527409 @default.
- W3099724835 cites W2979485822 @default.
- W3099724835 cites W2984128514 @default.
- W3099724835 cites W3080366021 @default.
- W3099724835 cites W3102536158 @default.
- W3099724835 cites W4245530844 @default.
- W3099724835 cites W70323760 @default.
- W3099724835 doi "https://doi.org/10.1029/2020ms002109" @default.
- W3099724835 hasPublicationYear "2020" @default.
- W3099724835 type Work @default.
- W3099724835 sameAs 3099724835 @default.
- W3099724835 citedByCount "91" @default.
- W3099724835 countsByYear W30997248352020 @default.
- W3099724835 countsByYear W30997248352021 @default.
- W3099724835 countsByYear W30997248352022 @default.
- W3099724835 countsByYear W30997248352023 @default.
- W3099724835 crossrefType "journal-article" @default.
- W3099724835 hasAuthorship W3099724835A5013687804 @default.
- W3099724835 hasAuthorship W3099724835A5041836228 @default.
- W3099724835 hasAuthorship W3099724835A5083893060 @default.
- W3099724835 hasBestOaLocation W30997248351 @default.
- W3099724835 hasConcept C108583219 @default.
- W3099724835 hasConcept C127313418 @default.
- W3099724835 hasConcept C13280743 @default.
- W3099724835 hasConcept C147947694 @default.
- W3099724835 hasConcept C153294291 @default.
- W3099724835 hasConcept C154945302 @default.
- W3099724835 hasConcept C187691185 @default.
- W3099724835 hasConcept C197115733 @default.
- W3099724835 hasConcept C205649164 @default.
- W3099724835 hasConcept C21001229 @default.
- W3099724835 hasConcept C41008148 @default.
- W3099724835 hasConcept C49204034 @default.
- W3099724835 hasConcept C50644808 @default.
- W3099724835 hasConcept C81363708 @default.
- W3099724835 hasConceptScore W3099724835C108583219 @default.
- W3099724835 hasConceptScore W3099724835C127313418 @default.
- W3099724835 hasConceptScore W3099724835C13280743 @default.
- W3099724835 hasConceptScore W3099724835C147947694 @default.
- W3099724835 hasConceptScore W3099724835C153294291 @default.
- W3099724835 hasConceptScore W3099724835C154945302 @default.
- W3099724835 hasConceptScore W3099724835C187691185 @default.
- W3099724835 hasConceptScore W3099724835C197115733 @default.
- W3099724835 hasConceptScore W3099724835C205649164 @default.
- W3099724835 hasConceptScore W3099724835C21001229 @default.
- W3099724835 hasConceptScore W3099724835C41008148 @default.
- W3099724835 hasConceptScore W3099724835C49204034 @default.
- W3099724835 hasConceptScore W3099724835C50644808 @default.
- W3099724835 hasConceptScore W3099724835C81363708 @default.
- W3099724835 hasFunder F4320333566 @default.
- W3099724835 hasIssue "9" @default.
- W3099724835 hasLocation W30997248351 @default.
- W3099724835 hasLocation W30997248352 @default.
- W3099724835 hasOpenAccess W3099724835 @default.
- W3099724835 hasPrimaryLocation W30997248351 @default.
- W3099724835 hasRelatedWork W2160203977 @default.
- W3099724835 hasRelatedWork W2731899572 @default.
- W3099724835 hasRelatedWork W2763109982 @default.
- W3099724835 hasRelatedWork W2999805992 @default.
- W3099724835 hasRelatedWork W3116150086 @default.
- W3099724835 hasRelatedWork W3133861977 @default.
- W3099724835 hasRelatedWork W3166467183 @default.
- W3099724835 hasRelatedWork W3192840557 @default.
- W3099724835 hasRelatedWork W4200173597 @default.
- W3099724835 hasRelatedWork W4220996320 @default.
- W3099724835 hasVolume "12" @default.