Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099794172> ?p ?o ?g. }
- W3099794172 endingPage "10127" @default.
- W3099794172 startingPage "10127" @default.
- W3099794172 abstract "We introduce deep learning technique to perform complete mode decomposition for few-mode optical fiber for the first time. Our goal is to learn a fast and accurate mapping from near-field beam profiles to the complete mode coefficients, including both modal amplitudes and phases. We train the convolutional neural network with simulated beam patterns, and evaluate the network on both of the simulated beam data and the real beam data. In simulated beam data testing, the correlation between the reconstructed and the ideal beam profiles can achieve 0.9993 and 0.995 for 3-mode case and 5-mode case respectively. While in the real 3-mode beam data testing, the average correlation is 0.9912 and the mode decomposition can be potentially performed at 33 Hz frequency on Graphic Processing Unit, indicating real-time processing ability. The quantitative evaluations demonstrate the superiority of our deep learning based approach." @default.
- W3099794172 created "2020-11-23" @default.
- W3099794172 creator A5012797943 @default.
- W3099794172 creator A5017927845 @default.
- W3099794172 creator A5019069134 @default.
- W3099794172 creator A5033053812 @default.
- W3099794172 creator A5066805987 @default.
- W3099794172 creator A5079666731 @default.
- W3099794172 date "2019-03-27" @default.
- W3099794172 modified "2023-10-17" @default.
- W3099794172 title "Learning to decompose the modes in few-mode fibers with deep convolutional neural network" @default.
- W3099794172 cites W1673833731 @default.
- W3099794172 cites W1915585552 @default.
- W3099794172 cites W1963561884 @default.
- W3099794172 cites W1965391547 @default.
- W3099794172 cites W1979325268 @default.
- W3099794172 cites W2015709441 @default.
- W3099794172 cites W2016709319 @default.
- W3099794172 cites W2024031264 @default.
- W3099794172 cites W2026565653 @default.
- W3099794172 cites W2028632528 @default.
- W3099794172 cites W2037486083 @default.
- W3099794172 cites W2040039916 @default.
- W3099794172 cites W2043895660 @default.
- W3099794172 cites W2050257632 @default.
- W3099794172 cites W2056014455 @default.
- W3099794172 cites W2064973755 @default.
- W3099794172 cites W2068070038 @default.
- W3099794172 cites W2094115234 @default.
- W3099794172 cites W2094820330 @default.
- W3099794172 cites W2122119696 @default.
- W3099794172 cites W2145098978 @default.
- W3099794172 cites W2171280944 @default.
- W3099794172 cites W2293787368 @default.
- W3099794172 cites W2657755538 @default.
- W3099794172 cites W2736908887 @default.
- W3099794172 cites W2745071365 @default.
- W3099794172 cites W2772609332 @default.
- W3099794172 cites W2802403361 @default.
- W3099794172 cites W2885397178 @default.
- W3099794172 cites W2963698847 @default.
- W3099794172 cites W3102127550 @default.
- W3099794172 cites W3103412703 @default.
- W3099794172 cites W3104210281 @default.
- W3099794172 doi "https://doi.org/10.1364/oe.27.010127" @default.
- W3099794172 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31045158" @default.
- W3099794172 hasPublicationYear "2019" @default.
- W3099794172 type Work @default.
- W3099794172 sameAs 3099794172 @default.
- W3099794172 citedByCount "93" @default.
- W3099794172 countsByYear W30997941722019 @default.
- W3099794172 countsByYear W30997941722020 @default.
- W3099794172 countsByYear W30997941722021 @default.
- W3099794172 countsByYear W30997941722022 @default.
- W3099794172 countsByYear W30997941722023 @default.
- W3099794172 crossrefType "journal-article" @default.
- W3099794172 hasAuthorship W3099794172A5012797943 @default.
- W3099794172 hasAuthorship W3099794172A5017927845 @default.
- W3099794172 hasAuthorship W3099794172A5019069134 @default.
- W3099794172 hasAuthorship W3099794172A5033053812 @default.
- W3099794172 hasAuthorship W3099794172A5066805987 @default.
- W3099794172 hasAuthorship W3099794172A5079666731 @default.
- W3099794172 hasBestOaLocation W30997941721 @default.
- W3099794172 hasConcept C108583219 @default.
- W3099794172 hasConcept C111919701 @default.
- W3099794172 hasConcept C120665830 @default.
- W3099794172 hasConcept C121332964 @default.
- W3099794172 hasConcept C154945302 @default.
- W3099794172 hasConcept C168834538 @default.
- W3099794172 hasConcept C188027245 @default.
- W3099794172 hasConcept C192562407 @default.
- W3099794172 hasConcept C41008148 @default.
- W3099794172 hasConcept C48677424 @default.
- W3099794172 hasConcept C50644808 @default.
- W3099794172 hasConcept C71139939 @default.
- W3099794172 hasConcept C81363708 @default.
- W3099794172 hasConceptScore W3099794172C108583219 @default.
- W3099794172 hasConceptScore W3099794172C111919701 @default.
- W3099794172 hasConceptScore W3099794172C120665830 @default.
- W3099794172 hasConceptScore W3099794172C121332964 @default.
- W3099794172 hasConceptScore W3099794172C154945302 @default.
- W3099794172 hasConceptScore W3099794172C168834538 @default.
- W3099794172 hasConceptScore W3099794172C188027245 @default.
- W3099794172 hasConceptScore W3099794172C192562407 @default.
- W3099794172 hasConceptScore W3099794172C41008148 @default.
- W3099794172 hasConceptScore W3099794172C48677424 @default.
- W3099794172 hasConceptScore W3099794172C50644808 @default.
- W3099794172 hasConceptScore W3099794172C71139939 @default.
- W3099794172 hasConceptScore W3099794172C81363708 @default.
- W3099794172 hasFunder F4320321001 @default.
- W3099794172 hasFunder F4320324150 @default.
- W3099794172 hasIssue "7" @default.
- W3099794172 hasLocation W30997941721 @default.
- W3099794172 hasLocation W30997941722 @default.
- W3099794172 hasLocation W30997941723 @default.
- W3099794172 hasOpenAccess W3099794172 @default.
- W3099794172 hasPrimaryLocation W30997941721 @default.
- W3099794172 hasRelatedWork W2084220915 @default.