Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099804545> ?p ?o ?g. }
- W3099804545 abstract "ABSTRACT Computational approaches to predict drug sensitivity can promote precision anticancer therapeutics. Generalizable and explainable models are of critical importance for translation to guide personalized treatment and are often overlooked in favor of prediction performance. Here, we propose a pathway-based model for drug sensitivity prediction that integrates chemical structure information with enrichment of cancer signaling pathways across drug-associated genes, gene expression, mutation and copy number variation data to predict drug response on the Genomics of Drug Sensitivity in Cancer (GDSC) dataset. Using a deep neural network, we outperforming state-of-the-art deep learning models, while demonstrating good generalizability a separate dataset of the Cancer Cell Line Encyclopedia (CCLE) as well as provide explainable results, demonstrated through case studies that are in line with current knowledge. Additionally, our pathway-based model achieved a good performance when predicting unseen drugs and cells, with potential utility for drug development and for guiding individualized medicine." @default.
- W3099804545 created "2020-11-23" @default.
- W3099804545 creator A5002513351 @default.
- W3099804545 creator A5011791699 @default.
- W3099804545 date "2020-11-10" @default.
- W3099804545 modified "2023-10-14" @default.
- W3099804545 title "PathDSP: Explainable Drug Sensitivity Prediction through Cancer Pathway Enrichment" @default.
- W3099804545 cites W1500925570 @default.
- W3099804545 cites W1966923590 @default.
- W3099804545 cites W1993410245 @default.
- W3099804545 cites W1994032414 @default.
- W3099804545 cites W2001683342 @default.
- W3099804545 cites W2010457001 @default.
- W3099804545 cites W2011474181 @default.
- W3099804545 cites W2025291355 @default.
- W3099804545 cites W2032347891 @default.
- W3099804545 cites W2042484101 @default.
- W3099804545 cites W2043398720 @default.
- W3099804545 cites W2072009837 @default.
- W3099804545 cites W2078139160 @default.
- W3099804545 cites W2094615952 @default.
- W3099804545 cites W2096766502 @default.
- W3099804545 cites W2108068107 @default.
- W3099804545 cites W2119293829 @default.
- W3099804545 cites W2121431024 @default.
- W3099804545 cites W2123879591 @default.
- W3099804545 cites W2129769331 @default.
- W3099804545 cites W2129860849 @default.
- W3099804545 cites W2177317049 @default.
- W3099804545 cites W2334509758 @default.
- W3099804545 cites W2372867259 @default.
- W3099804545 cites W2424454289 @default.
- W3099804545 cites W2556096812 @default.
- W3099804545 cites W2742007096 @default.
- W3099804545 cites W2784483500 @default.
- W3099804545 cites W2892741787 @default.
- W3099804545 cites W2893531376 @default.
- W3099804545 cites W2893622300 @default.
- W3099804545 cites W2900569176 @default.
- W3099804545 cites W2911964244 @default.
- W3099804545 cites W2920031025 @default.
- W3099804545 cites W2946834067 @default.
- W3099804545 cites W2949159188 @default.
- W3099804545 cites W2973263543 @default.
- W3099804545 cites W2982477695 @default.
- W3099804545 cites W3011089475 @default.
- W3099804545 cites W3102476541 @default.
- W3099804545 cites W626649172 @default.
- W3099804545 doi "https://doi.org/10.1101/2020.11.09.374132" @default.
- W3099804545 hasPublicationYear "2020" @default.
- W3099804545 type Work @default.
- W3099804545 sameAs 3099804545 @default.
- W3099804545 citedByCount "1" @default.
- W3099804545 countsByYear W30998045452022 @default.
- W3099804545 crossrefType "posted-content" @default.
- W3099804545 hasAuthorship W3099804545A5002513351 @default.
- W3099804545 hasAuthorship W3099804545A5011791699 @default.
- W3099804545 hasBestOaLocation W30998045451 @default.
- W3099804545 hasConcept C108583219 @default.
- W3099804545 hasConcept C119857082 @default.
- W3099804545 hasConcept C121608353 @default.
- W3099804545 hasConcept C127413603 @default.
- W3099804545 hasConcept C138496976 @default.
- W3099804545 hasConcept C154945302 @default.
- W3099804545 hasConcept C15744967 @default.
- W3099804545 hasConcept C163763905 @default.
- W3099804545 hasConcept C21200559 @default.
- W3099804545 hasConcept C24326235 @default.
- W3099804545 hasConcept C27158222 @default.
- W3099804545 hasConcept C2780035454 @default.
- W3099804545 hasConcept C2989108626 @default.
- W3099804545 hasConcept C2994372470 @default.
- W3099804545 hasConcept C3020340455 @default.
- W3099804545 hasConcept C32220436 @default.
- W3099804545 hasConcept C41008148 @default.
- W3099804545 hasConcept C50644808 @default.
- W3099804545 hasConcept C54355233 @default.
- W3099804545 hasConcept C60644358 @default.
- W3099804545 hasConcept C64903051 @default.
- W3099804545 hasConcept C70721500 @default.
- W3099804545 hasConcept C86803240 @default.
- W3099804545 hasConcept C96232424 @default.
- W3099804545 hasConcept C98274493 @default.
- W3099804545 hasConceptScore W3099804545C108583219 @default.
- W3099804545 hasConceptScore W3099804545C119857082 @default.
- W3099804545 hasConceptScore W3099804545C121608353 @default.
- W3099804545 hasConceptScore W3099804545C127413603 @default.
- W3099804545 hasConceptScore W3099804545C138496976 @default.
- W3099804545 hasConceptScore W3099804545C154945302 @default.
- W3099804545 hasConceptScore W3099804545C15744967 @default.
- W3099804545 hasConceptScore W3099804545C163763905 @default.
- W3099804545 hasConceptScore W3099804545C21200559 @default.
- W3099804545 hasConceptScore W3099804545C24326235 @default.
- W3099804545 hasConceptScore W3099804545C27158222 @default.
- W3099804545 hasConceptScore W3099804545C2780035454 @default.
- W3099804545 hasConceptScore W3099804545C2989108626 @default.
- W3099804545 hasConceptScore W3099804545C2994372470 @default.
- W3099804545 hasConceptScore W3099804545C3020340455 @default.
- W3099804545 hasConceptScore W3099804545C32220436 @default.
- W3099804545 hasConceptScore W3099804545C41008148 @default.