Matches in SemOpenAlex for { <https://semopenalex.org/work/W3099882307> ?p ?o ?g. }
- W3099882307 endingPage "1392" @default.
- W3099882307 startingPage "1337" @default.
- W3099882307 abstract "As for the theory of maximal representations, we introduce the volume of a Zimmer's cocycle $Gamma times X rightarrow mbox{PO}^circ(n, 1)$, where $Gamma$ is a torsion-free (non-)uniform lattice in $mbox{PO}^circ(n, 1)$, with $n geq 3$, and $X$ is a suitable standard Borel probability $Gamma$-space. Our numerical invariant extends the volume of representations for (non-)uniform lattices to measurable cocycles and in the uniform setting it agrees with the generalized version of the Euler number of self-couplings. We prove that our volume of cocycles satisfies a Milnor-Wood type inequality in terms of the volume of the manifold $Gamma backslash mathbb{H}^n$. This invariant can be interpreted as a suitable multiplicative constant between bounded cohomology classes. This allows us to characterize maximal cocycles for being cohomologous to the cocycle induced by the standard lattice embedding via a measurable map $X rightarrow mbox{PO}(n, 1)$ with essentially constant sign. As a by-product of our rigidity result for the volume of cocycles, we give a new proof of the mapping degree theorem. This allows us to provide a complete characterization of maps homotopic to local isometries between closed hyperbolic manifolds in terms of maximal cocycles. In dimension $n = 2$, we introduce the notion of Euler number of measurable cocycles associated to closed surface groups. It extends the classic Euler number of representations and it agrees with the generalized version of the Euler number of self-couplings up to a multiplicative constant. We show a Milnor-Wood type inequality whose upper bound is given by the modulus of the Euler characteristic. This gives an alternative proof of the same result for the generalized version of the Euler number of self-couplings. Finally, we characterize maximal cocycles as those which are cohomologous to the one induced by a hyperbolization." @default.
- W3099882307 created "2020-11-23" @default.
- W3099882307 creator A5054266546 @default.
- W3099882307 creator A5085304113 @default.
- W3099882307 date "2020-11-17" @default.
- W3099882307 modified "2023-09-25" @default.
- W3099882307 title "A MATSUMOTO–MOSTOW RESULT FOR ZIMMER’S COCYCLES OF HYPERBOLIC LATTICES" @default.
- W3099882307 cites W1513006141 @default.
- W3099882307 cites W1513829209 @default.
- W3099882307 cites W1537577123 @default.
- W3099882307 cites W1562337984 @default.
- W3099882307 cites W156547846 @default.
- W3099882307 cites W1589310148 @default.
- W3099882307 cites W1636161970 @default.
- W3099882307 cites W1875134358 @default.
- W3099882307 cites W1883499129 @default.
- W3099882307 cites W1932838335 @default.
- W3099882307 cites W1982015992 @default.
- W3099882307 cites W1987202275 @default.
- W3099882307 cites W1993296745 @default.
- W3099882307 cites W1999816634 @default.
- W3099882307 cites W2032365505 @default.
- W3099882307 cites W2034506802 @default.
- W3099882307 cites W2035203903 @default.
- W3099882307 cites W2064013450 @default.
- W3099882307 cites W2065516294 @default.
- W3099882307 cites W2071419210 @default.
- W3099882307 cites W2079500737 @default.
- W3099882307 cites W2094508941 @default.
- W3099882307 cites W2100810081 @default.
- W3099882307 cites W2101769336 @default.
- W3099882307 cites W2108239898 @default.
- W3099882307 cites W2136675619 @default.
- W3099882307 cites W2149837999 @default.
- W3099882307 cites W2157445685 @default.
- W3099882307 cites W2166070389 @default.
- W3099882307 cites W2167490938 @default.
- W3099882307 cites W2169194620 @default.
- W3099882307 cites W2236439257 @default.
- W3099882307 cites W2254593613 @default.
- W3099882307 cites W2334872125 @default.
- W3099882307 cites W2608063382 @default.
- W3099882307 cites W2768028122 @default.
- W3099882307 cites W2788758712 @default.
- W3099882307 cites W2883689651 @default.
- W3099882307 cites W2886222068 @default.
- W3099882307 cites W2962693192 @default.
- W3099882307 cites W2962965900 @default.
- W3099882307 cites W2963039270 @default.
- W3099882307 cites W2963298380 @default.
- W3099882307 cites W2963372503 @default.
- W3099882307 cites W2963576521 @default.
- W3099882307 cites W2963642245 @default.
- W3099882307 cites W2964307041 @default.
- W3099882307 cites W3098977519 @default.
- W3099882307 cites W3100628917 @default.
- W3099882307 cites W3101444809 @default.
- W3099882307 cites W3101763990 @default.
- W3099882307 cites W3102426206 @default.
- W3099882307 cites W3103470533 @default.
- W3099882307 cites W3103657800 @default.
- W3099882307 cites W3104881279 @default.
- W3099882307 cites W3105847104 @default.
- W3099882307 cites W4205531361 @default.
- W3099882307 cites W4206373830 @default.
- W3099882307 cites W4235653545 @default.
- W3099882307 cites W4244461330 @default.
- W3099882307 cites W4251663627 @default.
- W3099882307 cites W596096710 @default.
- W3099882307 doi "https://doi.org/10.1007/s00031-020-09630-z" @default.
- W3099882307 hasPublicationYear "2020" @default.
- W3099882307 type Work @default.
- W3099882307 sameAs 3099882307 @default.
- W3099882307 citedByCount "12" @default.
- W3099882307 countsByYear W30998823072019 @default.
- W3099882307 countsByYear W30998823072020 @default.
- W3099882307 countsByYear W30998823072021 @default.
- W3099882307 countsByYear W30998823072022 @default.
- W3099882307 crossrefType "journal-article" @default.
- W3099882307 hasAuthorship W3099882307A5054266546 @default.
- W3099882307 hasAuthorship W3099882307A5085304113 @default.
- W3099882307 hasBestOaLocation W30998823071 @default.
- W3099882307 hasConcept C121332964 @default.
- W3099882307 hasConcept C122044880 @default.
- W3099882307 hasConcept C12520029 @default.
- W3099882307 hasConcept C134306372 @default.
- W3099882307 hasConcept C1432948 @default.
- W3099882307 hasConcept C190470478 @default.
- W3099882307 hasConcept C195065555 @default.
- W3099882307 hasConcept C196433757 @default.
- W3099882307 hasConcept C202444582 @default.
- W3099882307 hasConcept C24890656 @default.
- W3099882307 hasConcept C2524010 @default.
- W3099882307 hasConcept C2780345915 @default.
- W3099882307 hasConcept C2781204021 @default.
- W3099882307 hasConcept C33923547 @default.
- W3099882307 hasConcept C37914503 @default.
- W3099882307 hasConcept C42747912 @default.