Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100014799> ?p ?o ?g. }
- W3100014799 endingPage "106898" @default.
- W3100014799 startingPage "106898" @default.
- W3100014799 abstract "The technical indicators are highly uncertain therefore possess greater influence on the stock market prediction. Among different techniques developed for effective prediction of the financial market the AI techniques show better prediction efficiency. In this paper, a hybrid model combined with auto encoder (AE) and kernel extreme learning machine (KELM) is proposed for further improvement in the quality of financial market prediction. This study mainly emphasizes on a precise prediction of the financial market, the main motive behind stock price prediction is minimizing the substantial losses faced by investors, and analysing the profitability with the help of buying and selling amount. The prime advantage of the proposed technique over the conventional SAE is robust prediction of different financial market with reduction in error. To authenticate the performance of the proposed deep learning (DL) technique (KELM-AE), high-frequency data of different financial market like Yes Bank, SBI, ASHR, and DJI are taken into consideration and the performance of the proposed technique is investigated in MATLAB based simulation in accordance with MAPE (Mean Absolute Percentage Error), MAE (Mean Absolute Error) and RMSE (Root Mean Square Error). The application of SAE is new in the field of predicting different bank data. The validation of the model is performed by comparing it with other traditional methods based on different performance indexes. The simulation result indicates that the proposed DL based technique (KELM-AE) outperforms other models with a MAPE value of less than 2%for future prediction, irrespective of the financial market. For example the MAPE value for KELM-AE is observed to be 1.074 %, 0.888%, 1.021% for YES, SBI and BOI respectively which is much lower as compared to other model like ELM that shows a MAPE value of 1.714%, 1.473% and 1.550% for the above mentioned bank. • A new robust KELM-AE is applied for financial market prediction. • The stacked AE is combined with the KELM for predicting different bank data is introduced. • Profitability analysis is performed for better assessment of the proposed model. • Historical data OHLC is considered as the input variable of different financial market." @default.
- W3100014799 created "2020-11-23" @default.
- W3100014799 creator A5022079946 @default.
- W3100014799 creator A5070866011 @default.
- W3100014799 creator A5079452702 @default.
- W3100014799 date "2021-02-01" @default.
- W3100014799 modified "2023-10-06" @default.
- W3100014799 title "Financial market prediction under deep learning framework using auto encoder and kernel extreme learning machine" @default.
- W3100014799 cites W1069790386 @default.
- W3100014799 cites W1978641127 @default.
- W3100014799 cites W1984020445 @default.
- W3100014799 cites W1997994299 @default.
- W3100014799 cites W1999996900 @default.
- W3100014799 cites W2006493581 @default.
- W3100014799 cites W2017212187 @default.
- W3100014799 cites W2021826571 @default.
- W3100014799 cites W2025291942 @default.
- W3100014799 cites W2029316659 @default.
- W3100014799 cites W2029387902 @default.
- W3100014799 cites W2030132134 @default.
- W3100014799 cites W2033272835 @default.
- W3100014799 cites W2053615983 @default.
- W3100014799 cites W2056646884 @default.
- W3100014799 cites W2059852492 @default.
- W3100014799 cites W2070242706 @default.
- W3100014799 cites W2111838090 @default.
- W3100014799 cites W2158442843 @default.
- W3100014799 cites W2283737367 @default.
- W3100014799 cites W2303916163 @default.
- W3100014799 cites W2315598830 @default.
- W3100014799 cites W2409641346 @default.
- W3100014799 cites W2419595019 @default.
- W3100014799 cites W2493814989 @default.
- W3100014799 cites W2518736501 @default.
- W3100014799 cites W2582163918 @default.
- W3100014799 cites W2616010924 @default.
- W3100014799 cites W2743656938 @default.
- W3100014799 cites W2750424527 @default.
- W3100014799 cites W2753485661 @default.
- W3100014799 cites W2763500568 @default.
- W3100014799 cites W2778901641 @default.
- W3100014799 cites W2793147161 @default.
- W3100014799 cites W2806777472 @default.
- W3100014799 cites W2981174158 @default.
- W3100014799 cites W2986977368 @default.
- W3100014799 cites W3009110042 @default.
- W3100014799 cites W3015047224 @default.
- W3100014799 cites W3022746105 @default.
- W3100014799 cites W3039137888 @default.
- W3100014799 cites W307184769 @default.
- W3100014799 cites W4205947740 @default.
- W3100014799 cites W4241727697 @default.
- W3100014799 cites W789578048 @default.
- W3100014799 doi "https://doi.org/10.1016/j.asoc.2020.106898" @default.
- W3100014799 hasPublicationYear "2021" @default.
- W3100014799 type Work @default.
- W3100014799 sameAs 3100014799 @default.
- W3100014799 citedByCount "33" @default.
- W3100014799 countsByYear W31000147992021 @default.
- W3100014799 countsByYear W31000147992022 @default.
- W3100014799 countsByYear W31000147992023 @default.
- W3100014799 crossrefType "journal-article" @default.
- W3100014799 hasAuthorship W3100014799A5022079946 @default.
- W3100014799 hasAuthorship W3100014799A5070866011 @default.
- W3100014799 hasAuthorship W3100014799A5079452702 @default.
- W3100014799 hasConcept C10138342 @default.
- W3100014799 hasConcept C105795698 @default.
- W3100014799 hasConcept C119857082 @default.
- W3100014799 hasConcept C124101348 @default.
- W3100014799 hasConcept C129361004 @default.
- W3100014799 hasConcept C139945424 @default.
- W3100014799 hasConcept C149782125 @default.
- W3100014799 hasConcept C150217764 @default.
- W3100014799 hasConcept C151730666 @default.
- W3100014799 hasConcept C154945302 @default.
- W3100014799 hasConcept C162324750 @default.
- W3100014799 hasConcept C2776256503 @default.
- W3100014799 hasConcept C2779343474 @default.
- W3100014799 hasConcept C2780299701 @default.
- W3100014799 hasConcept C33923547 @default.
- W3100014799 hasConcept C41008148 @default.
- W3100014799 hasConcept C45804977 @default.
- W3100014799 hasConcept C50644808 @default.
- W3100014799 hasConcept C86803240 @default.
- W3100014799 hasConceptScore W3100014799C10138342 @default.
- W3100014799 hasConceptScore W3100014799C105795698 @default.
- W3100014799 hasConceptScore W3100014799C119857082 @default.
- W3100014799 hasConceptScore W3100014799C124101348 @default.
- W3100014799 hasConceptScore W3100014799C129361004 @default.
- W3100014799 hasConceptScore W3100014799C139945424 @default.
- W3100014799 hasConceptScore W3100014799C149782125 @default.
- W3100014799 hasConceptScore W3100014799C150217764 @default.
- W3100014799 hasConceptScore W3100014799C151730666 @default.
- W3100014799 hasConceptScore W3100014799C154945302 @default.
- W3100014799 hasConceptScore W3100014799C162324750 @default.
- W3100014799 hasConceptScore W3100014799C2776256503 @default.
- W3100014799 hasConceptScore W3100014799C2779343474 @default.
- W3100014799 hasConceptScore W3100014799C2780299701 @default.