Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100015175> ?p ?o ?g. }
- W3100015175 abstract "Abstract Recent advances have enabled gene expression profiling of single cells at lower cost. As more data is produced there is an increasing need to integrate diverse datasets and better analyse underutilised data to gain biological insights. However, analysis of single cell RNA-seq data is challenging due to biological and technical noise which not only varies between laboratories but also between batches. Here for the first time, we apply a new generative deep learning approach called Generative Adversarial Networks (GAN) to biological data. We apply GANs to epidermal, neural and hematopoietic scRNA-seq data spanning different labs and experimental protocols. We show that it is possible to integrate diverse scRNA-seq datasets and in doing so, our generative model is able to simulate realistic scRNA-seq data that covers the full diversity of cell types. In contrast to many machine-learning approaches, we are able to interpret internal parameters in a biologically meaningful manner. Using our generative model we are able to obtain a universal representation of epidermal differentiation and use this to predict the effect of cell state perturbations on gene expression at high time-resolution. We show that our trained neural networks identify biological state-determining genes and through analysis of these networks we can obtain inferred gene regulatory relationships. Finally, we use internal GAN learned features to perform dimensionality reduction. In combination these attributes provide a powerful framework to progress the analysis of scRNA-seq data beyond exploratory analysis of cell clusters and towards integration of multiple datasets regardless of origin." @default.
- W3100015175 created "2020-11-23" @default.
- W3100015175 creator A5016443021 @default.
- W3100015175 creator A5038345168 @default.
- W3100015175 creator A5068471552 @default.
- W3100015175 date "2018-02-08" @default.
- W3100015175 modified "2023-10-18" @default.
- W3100015175 title "Generative adversarial networks simulate gene expression and predict perturbations in single cells" @default.
- W3100015175 cites W1547041557 @default.
- W3100015175 cites W1965591734 @default.
- W3100015175 cites W1973869185 @default.
- W3100015175 cites W1984693616 @default.
- W3100015175 cites W2016514944 @default.
- W3100015175 cites W2039396493 @default.
- W3100015175 cites W2053227522 @default.
- W3100015175 cites W2074152945 @default.
- W3100015175 cites W2094394048 @default.
- W3100015175 cites W2102296842 @default.
- W3100015175 cites W2108862219 @default.
- W3100015175 cites W2112816839 @default.
- W3100015175 cites W2139838862 @default.
- W3100015175 cites W2149573463 @default.
- W3100015175 cites W2152692691 @default.
- W3100015175 cites W2345356016 @default.
- W3100015175 cites W2564176045 @default.
- W3100015175 cites W2581082771 @default.
- W3100015175 cites W2607067924 @default.
- W3100015175 cites W2615606533 @default.
- W3100015175 cites W2616922646 @default.
- W3100015175 cites W2741564801 @default.
- W3100015175 cites W2766959028 @default.
- W3100015175 cites W2801527818 @default.
- W3100015175 cites W2950519754 @default.
- W3100015175 cites W2951506174 @default.
- W3100015175 cites W2952682383 @default.
- W3100015175 cites W2952888409 @default.
- W3100015175 cites W2952935243 @default.
- W3100015175 cites W2953251392 @default.
- W3100015175 cites W2963853645 @default.
- W3100015175 doi "https://doi.org/10.1101/262501" @default.
- W3100015175 hasPublicationYear "2018" @default.
- W3100015175 type Work @default.
- W3100015175 sameAs 3100015175 @default.
- W3100015175 citedByCount "42" @default.
- W3100015175 countsByYear W31000151752018 @default.
- W3100015175 countsByYear W31000151752019 @default.
- W3100015175 countsByYear W31000151752020 @default.
- W3100015175 countsByYear W31000151752021 @default.
- W3100015175 countsByYear W31000151752022 @default.
- W3100015175 countsByYear W31000151752023 @default.
- W3100015175 crossrefType "posted-content" @default.
- W3100015175 hasAuthorship W3100015175A5016443021 @default.
- W3100015175 hasAuthorship W3100015175A5038345168 @default.
- W3100015175 hasAuthorship W3100015175A5068471552 @default.
- W3100015175 hasBestOaLocation W31000151751 @default.
- W3100015175 hasConcept C104317684 @default.
- W3100015175 hasConcept C111030470 @default.
- W3100015175 hasConcept C111919701 @default.
- W3100015175 hasConcept C119857082 @default.
- W3100015175 hasConcept C124101348 @default.
- W3100015175 hasConcept C150194340 @default.
- W3100015175 hasConcept C154945302 @default.
- W3100015175 hasConcept C167966045 @default.
- W3100015175 hasConcept C17744445 @default.
- W3100015175 hasConcept C187191949 @default.
- W3100015175 hasConcept C199360897 @default.
- W3100015175 hasConcept C199539241 @default.
- W3100015175 hasConcept C201797286 @default.
- W3100015175 hasConcept C2776359362 @default.
- W3100015175 hasConcept C2780440489 @default.
- W3100015175 hasConcept C39890363 @default.
- W3100015175 hasConcept C41008148 @default.
- W3100015175 hasConcept C50644808 @default.
- W3100015175 hasConcept C55493867 @default.
- W3100015175 hasConcept C60644358 @default.
- W3100015175 hasConcept C67339327 @default.
- W3100015175 hasConcept C70518039 @default.
- W3100015175 hasConcept C86803240 @default.
- W3100015175 hasConcept C90559484 @default.
- W3100015175 hasConcept C94625758 @default.
- W3100015175 hasConceptScore W3100015175C104317684 @default.
- W3100015175 hasConceptScore W3100015175C111030470 @default.
- W3100015175 hasConceptScore W3100015175C111919701 @default.
- W3100015175 hasConceptScore W3100015175C119857082 @default.
- W3100015175 hasConceptScore W3100015175C124101348 @default.
- W3100015175 hasConceptScore W3100015175C150194340 @default.
- W3100015175 hasConceptScore W3100015175C154945302 @default.
- W3100015175 hasConceptScore W3100015175C167966045 @default.
- W3100015175 hasConceptScore W3100015175C17744445 @default.
- W3100015175 hasConceptScore W3100015175C187191949 @default.
- W3100015175 hasConceptScore W3100015175C199360897 @default.
- W3100015175 hasConceptScore W3100015175C199539241 @default.
- W3100015175 hasConceptScore W3100015175C201797286 @default.
- W3100015175 hasConceptScore W3100015175C2776359362 @default.
- W3100015175 hasConceptScore W3100015175C2780440489 @default.
- W3100015175 hasConceptScore W3100015175C39890363 @default.
- W3100015175 hasConceptScore W3100015175C41008148 @default.
- W3100015175 hasConceptScore W3100015175C50644808 @default.
- W3100015175 hasConceptScore W3100015175C55493867 @default.
- W3100015175 hasConceptScore W3100015175C60644358 @default.