Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100018800> ?p ?o ?g. }
- W3100018800 endingPage "1404" @default.
- W3100018800 startingPage "1394" @default.
- W3100018800 abstract "3D medical image registration is of great clinical importance. However, supervised learning methods require a large amount of accurately annotated corresponding control points (or morphing), which are very difficult to obtain. Unsupervised learning methods ease the burden of manual annotation by exploiting unlabeled data without supervision. In this paper, we propose a new unsupervised learning method using convolutional neural networks under an end-to-end framework, Volume Tweening Network (VTN), for 3D medical image registration. We propose three innovative technical components: (1) An end-to-end cascading scheme that resolves large displacement; (2) An efficient integration of affine registration network; and (3) An additional invertibility loss that encourages backward consistency. Experiments demonstrate that our algorithm is 880x faster (or 3.3x faster without GPU acceleration) than traditional optimization-based methods and achieves state-of-theart performance in medical image registration." @default.
- W3100018800 created "2020-11-23" @default.
- W3100018800 creator A5009069781 @default.
- W3100018800 creator A5010264115 @default.
- W3100018800 creator A5018898809 @default.
- W3100018800 creator A5066074514 @default.
- W3100018800 creator A5087298985 @default.
- W3100018800 date "2020-05-01" @default.
- W3100018800 modified "2023-10-17" @default.
- W3100018800 title "Unsupervised 3D End-to-End Medical Image Registration With Volume Tweening Network" @default.
- W3100018800 cites W1518961746 @default.
- W3100018800 cites W1903029394 @default.
- W3100018800 cites W1985586071 @default.
- W3100018800 cites W2082908671 @default.
- W3100018800 cites W2083099567 @default.
- W3100018800 cites W2089851677 @default.
- W3100018800 cites W2103559027 @default.
- W3100018800 cites W2105456967 @default.
- W3100018800 cites W2113576511 @default.
- W3100018800 cites W2133287637 @default.
- W3100018800 cites W2153431772 @default.
- W3100018800 cites W2156875677 @default.
- W3100018800 cites W2165840723 @default.
- W3100018800 cites W2167868121 @default.
- W3100018800 cites W2344328023 @default.
- W3100018800 cites W2520707372 @default.
- W3100018800 cites W2560474170 @default.
- W3100018800 cites W2592929672 @default.
- W3100018800 cites W2751297520 @default.
- W3100018800 cites W2891590469 @default.
- W3100018800 cites W2904555209 @default.
- W3100018800 cites W2949687197 @default.
- W3100018800 cites W2950568021 @default.
- W3100018800 cites W2963720324 @default.
- W3100018800 cites W2966108228 @default.
- W3100018800 cites W3098269293 @default.
- W3100018800 cites W3104164805 @default.
- W3100018800 cites W4253680483 @default.
- W3100018800 cites W764651262 @default.
- W3100018800 doi "https://doi.org/10.1109/jbhi.2019.2951024" @default.
- W3100018800 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/31689224" @default.
- W3100018800 hasPublicationYear "2020" @default.
- W3100018800 type Work @default.
- W3100018800 sameAs 3100018800 @default.
- W3100018800 citedByCount "145" @default.
- W3100018800 countsByYear W31000188002019 @default.
- W3100018800 countsByYear W31000188002020 @default.
- W3100018800 countsByYear W31000188002021 @default.
- W3100018800 countsByYear W31000188002022 @default.
- W3100018800 countsByYear W31000188002023 @default.
- W3100018800 crossrefType "journal-article" @default.
- W3100018800 hasAuthorship W3100018800A5009069781 @default.
- W3100018800 hasAuthorship W3100018800A5010264115 @default.
- W3100018800 hasAuthorship W3100018800A5018898809 @default.
- W3100018800 hasAuthorship W3100018800A5066074514 @default.
- W3100018800 hasAuthorship W3100018800A5087298985 @default.
- W3100018800 hasBestOaLocation W31000188002 @default.
- W3100018800 hasConcept C108583219 @default.
- W3100018800 hasConcept C115961682 @default.
- W3100018800 hasConcept C153180895 @default.
- W3100018800 hasConcept C154945302 @default.
- W3100018800 hasConcept C166704113 @default.
- W3100018800 hasConcept C202444582 @default.
- W3100018800 hasConcept C2776436953 @default.
- W3100018800 hasConcept C31972630 @default.
- W3100018800 hasConcept C33923547 @default.
- W3100018800 hasConcept C41008148 @default.
- W3100018800 hasConcept C50637493 @default.
- W3100018800 hasConcept C74296488 @default.
- W3100018800 hasConcept C8038995 @default.
- W3100018800 hasConcept C81363708 @default.
- W3100018800 hasConcept C92757383 @default.
- W3100018800 hasConceptScore W3100018800C108583219 @default.
- W3100018800 hasConceptScore W3100018800C115961682 @default.
- W3100018800 hasConceptScore W3100018800C153180895 @default.
- W3100018800 hasConceptScore W3100018800C154945302 @default.
- W3100018800 hasConceptScore W3100018800C166704113 @default.
- W3100018800 hasConceptScore W3100018800C202444582 @default.
- W3100018800 hasConceptScore W3100018800C2776436953 @default.
- W3100018800 hasConceptScore W3100018800C31972630 @default.
- W3100018800 hasConceptScore W3100018800C33923547 @default.
- W3100018800 hasConceptScore W3100018800C41008148 @default.
- W3100018800 hasConceptScore W3100018800C50637493 @default.
- W3100018800 hasConceptScore W3100018800C74296488 @default.
- W3100018800 hasConceptScore W3100018800C8038995 @default.
- W3100018800 hasConceptScore W3100018800C81363708 @default.
- W3100018800 hasConceptScore W3100018800C92757383 @default.
- W3100018800 hasFunder F4320308943 @default.
- W3100018800 hasFunder F4320321001 @default.
- W3100018800 hasFunder F4320321125 @default.
- W3100018800 hasFunder F4320326705 @default.
- W3100018800 hasFunder F4320327912 @default.
- W3100018800 hasFunder F4320335787 @default.
- W3100018800 hasIssue "5" @default.
- W3100018800 hasLocation W31000188001 @default.
- W3100018800 hasLocation W31000188002 @default.
- W3100018800 hasOpenAccess W3100018800 @default.
- W3100018800 hasPrimaryLocation W31000188001 @default.