Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100073715> ?p ?o ?g. }
- W3100073715 abstract "A fundamental problem in research into language and cultural change is the difficulty of distinguishing processes of stochastic drift (also known as neutral evolution) from processes that are subject to selection pressures. In this article, we describe a new technique based on deep neural networks, in which we reformulate the detection of evolutionary forces in cultural change as a binary classification task. Using residual networks for time series trained on artificially generated samples of cultural change, we demonstrate that this technique is able to efficiently, accurately and consistently learn which aspects of the time series are distinctive for drift and selection, respectively. We compare the model with a recently proposed statistical test, the Frequency Increment Test, and show that the neural time series classification system provides a possible solution to some of the key problems associated with this test." @default.
- W3100073715 created "2020-11-23" @default.
- W3100073715 creator A5026203522 @default.
- W3100073715 creator A5045516914 @default.
- W3100073715 creator A5065331381 @default.
- W3100073715 creator A5068789709 @default.
- W3100073715 date "2020-01-01" @default.
- W3100073715 modified "2023-10-10" @default.
- W3100073715 title "Classifying evolutionary forces in language change using neural networks" @default.
- W3100073715 cites W1502641836 @default.
- W3100073715 cites W1600338860 @default.
- W3100073715 cites W1983130208 @default.
- W3100073715 cites W1986837475 @default.
- W3100073715 cites W1996648136 @default.
- W3100073715 cites W2003902966 @default.
- W3100073715 cites W2017706736 @default.
- W3100073715 cites W2050555632 @default.
- W3100073715 cites W2057292322 @default.
- W3100073715 cites W2076063813 @default.
- W3100073715 cites W2080318501 @default.
- W3100073715 cites W209222512 @default.
- W3100073715 cites W2096989813 @default.
- W3100073715 cites W2097117768 @default.
- W3100073715 cites W2099953810 @default.
- W3100073715 cites W2112796928 @default.
- W3100073715 cites W2114843859 @default.
- W3100073715 cites W2120526498 @default.
- W3100073715 cites W2140931416 @default.
- W3100073715 cites W2148347530 @default.
- W3100073715 cites W2151552451 @default.
- W3100073715 cites W2153161473 @default.
- W3100073715 cites W2194775991 @default.
- W3100073715 cites W2206328021 @default.
- W3100073715 cites W2225925591 @default.
- W3100073715 cites W2472926939 @default.
- W3100073715 cites W2496897639 @default.
- W3100073715 cites W2545244969 @default.
- W3100073715 cites W2563841787 @default.
- W3100073715 cites W2765151040 @default.
- W3100073715 cites W2766667350 @default.
- W3100073715 cites W2801372348 @default.
- W3100073715 cites W2808573240 @default.
- W3100073715 cites W2889793150 @default.
- W3100073715 cites W2892035503 @default.
- W3100073715 cites W2919115771 @default.
- W3100073715 cites W2951466328 @default.
- W3100073715 cites W2957007523 @default.
- W3100073715 cites W2965599064 @default.
- W3100073715 cites W2976578518 @default.
- W3100073715 cites W2998078356 @default.
- W3100073715 cites W3031514878 @default.
- W3100073715 cites W3098348335 @default.
- W3100073715 cites W4210657878 @default.
- W3100073715 cites W4246904177 @default.
- W3100073715 doi "https://doi.org/10.1017/ehs.2020.52" @default.
- W3100073715 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37588365" @default.
- W3100073715 hasPublicationYear "2020" @default.
- W3100073715 type Work @default.
- W3100073715 sameAs 3100073715 @default.
- W3100073715 citedByCount "2" @default.
- W3100073715 countsByYear W31000737152022 @default.
- W3100073715 countsByYear W31000737152023 @default.
- W3100073715 crossrefType "journal-article" @default.
- W3100073715 hasAuthorship W3100073715A5026203522 @default.
- W3100073715 hasAuthorship W3100073715A5045516914 @default.
- W3100073715 hasAuthorship W3100073715A5065331381 @default.
- W3100073715 hasAuthorship W3100073715A5068789709 @default.
- W3100073715 hasBestOaLocation W31000737151 @default.
- W3100073715 hasConcept C11413529 @default.
- W3100073715 hasConcept C119857082 @default.
- W3100073715 hasConcept C12267149 @default.
- W3100073715 hasConcept C127413603 @default.
- W3100073715 hasConcept C143724316 @default.
- W3100073715 hasConcept C151730666 @default.
- W3100073715 hasConcept C154945302 @default.
- W3100073715 hasConcept C155512373 @default.
- W3100073715 hasConcept C159149176 @default.
- W3100073715 hasConcept C201995342 @default.
- W3100073715 hasConcept C203595873 @default.
- W3100073715 hasConcept C26517878 @default.
- W3100073715 hasConcept C2780451532 @default.
- W3100073715 hasConcept C33923547 @default.
- W3100073715 hasConcept C38652104 @default.
- W3100073715 hasConcept C41008148 @default.
- W3100073715 hasConcept C48372109 @default.
- W3100073715 hasConcept C50644808 @default.
- W3100073715 hasConcept C66905080 @default.
- W3100073715 hasConcept C81917197 @default.
- W3100073715 hasConcept C86803240 @default.
- W3100073715 hasConcept C94375191 @default.
- W3100073715 hasConceptScore W3100073715C11413529 @default.
- W3100073715 hasConceptScore W3100073715C119857082 @default.
- W3100073715 hasConceptScore W3100073715C12267149 @default.
- W3100073715 hasConceptScore W3100073715C127413603 @default.
- W3100073715 hasConceptScore W3100073715C143724316 @default.
- W3100073715 hasConceptScore W3100073715C151730666 @default.
- W3100073715 hasConceptScore W3100073715C154945302 @default.
- W3100073715 hasConceptScore W3100073715C155512373 @default.
- W3100073715 hasConceptScore W3100073715C159149176 @default.
- W3100073715 hasConceptScore W3100073715C201995342 @default.