Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100113076> ?p ?o ?g. }
- W3100113076 endingPage "e428" @default.
- W3100113076 startingPage "e428" @default.
- W3100113076 abstract "Hyperbolic metasurfaces have recently emerged as a new research frontier because of the unprecedented capabilities to manipulate surface plasmon polaritons (SPPs) and many potential applications. However, thus far, the existence of hyperbolic metasurfaces has neither been observed nor predicted at low frequencies because noble metals cannot support SPPs at longer wavelengths. Here, we propose and experimentally demonstrate spoof plasmonic metasurfaces with a hyperbolic dispersion, where the spoof SPPs propagate on complementary H-shaped, perfectly conducting surfaces at low frequencies. Thus, non-divergent diffractions, negative refraction and dispersion-dependent spin-momentum locking are observed as the spoof SPPs travel over the hyperbolic spoof plasmonic metasurfaces (HSPMs). The HSPMs provide fundamental new platforms to explore the propagation and spin of spoof SPPs. They show great capabilities for designing advanced surface wave devices such as spatial multiplexers, focusing and imaging devices, planar hyperlenses, and dispersion-dependent directional couplers, at both microwave and terahertz frequencies. An artificial optical material known as a hyperbolic metasurface that operates at low frequencies has been made. Metamaterials can be designed to have optical properties not found in nature. One example is the hyperbolic metasurface, so called because the strongly anisotropic electric or magnetic response of the material creates a hyperbolic dispersion in the photon's momemtum space. So far, only hyperbolic metasurfaces that operate at relatively high frequencies have been created. Now, Hongsheng Chen from Zhejiang University in China and co-workers has created a spoof plasmonic metasurface with exotic optical properties and that have low-frequency operation. They achieved this by using so-called spoof surface-plasmon polaritons that arise as light interacts with capacitances and inductances created by an array of H-shaped perfectly conducting surfaces. We propose and experimentally demonstrate spoof plasmonic metasurfaces with a hyperbolic dispersion, where the spoof SPPs propagate on complementary H-shaped perfectly conducting surfaces at low frequencies. In this way, non-divergent diffractions, negative refraction, and dispersion-dependent spin-momentum locking are observed as the spoof SPPs travel over the hyperbolic spoof plasmonic metasurfaces. They show great capabilities to design advanced surface wave devices such as spatial multiplexers, focusing and imaging devices, planar hyperlenses, and dispersion-dependent directional couplers, at both microwave and terahertz frequencies." @default.
- W3100113076 created "2020-11-23" @default.
- W3100113076 creator A5000738770 @default.
- W3100113076 creator A5000845071 @default.
- W3100113076 creator A5010930372 @default.
- W3100113076 creator A5021247489 @default.
- W3100113076 creator A5051733054 @default.
- W3100113076 creator A5052925141 @default.
- W3100113076 creator A5054162426 @default.
- W3100113076 creator A5059503237 @default.
- W3100113076 creator A5067120945 @default.
- W3100113076 creator A5068780578 @default.
- W3100113076 creator A5072017129 @default.
- W3100113076 date "2017-08-01" @default.
- W3100113076 modified "2023-09-24" @default.
- W3100113076 title "Hyperbolic spoof plasmonic metasurfaces" @default.
- W3100113076 cites W1483771350 @default.
- W3100113076 cites W1540344429 @default.
- W3100113076 cites W1612088912 @default.
- W3100113076 cites W1636546129 @default.
- W3100113076 cites W1663638871 @default.
- W3100113076 cites W1894821297 @default.
- W3100113076 cites W1964910374 @default.
- W3100113076 cites W1968294079 @default.
- W3100113076 cites W1975126030 @default.
- W3100113076 cites W1981006945 @default.
- W3100113076 cites W1990299300 @default.
- W3100113076 cites W1999034403 @default.
- W3100113076 cites W2008799028 @default.
- W3100113076 cites W2009901470 @default.
- W3100113076 cites W2012040270 @default.
- W3100113076 cites W2019950361 @default.
- W3100113076 cites W2027539126 @default.
- W3100113076 cites W2031557272 @default.
- W3100113076 cites W2036840493 @default.
- W3100113076 cites W2048394006 @default.
- W3100113076 cites W2050828289 @default.
- W3100113076 cites W2058131262 @default.
- W3100113076 cites W2071887375 @default.
- W3100113076 cites W2101497932 @default.
- W3100113076 cites W2109362844 @default.
- W3100113076 cites W2123343298 @default.
- W3100113076 cites W2152923907 @default.
- W3100113076 cites W2160595416 @default.
- W3100113076 cites W2162637781 @default.
- W3100113076 cites W2342363729 @default.
- W3100113076 cites W2403069638 @default.
- W3100113076 cites W2407051710 @default.
- W3100113076 cites W2411641924 @default.
- W3100113076 cites W2540216374 @default.
- W3100113076 cites W2582183452 @default.
- W3100113076 cites W4301319679 @default.
- W3100113076 cites W4376595525 @default.
- W3100113076 cites W910062042 @default.
- W3100113076 doi "https://doi.org/10.1038/am.2017.158" @default.
- W3100113076 hasPublicationYear "2017" @default.
- W3100113076 type Work @default.
- W3100113076 sameAs 3100113076 @default.
- W3100113076 citedByCount "91" @default.
- W3100113076 countsByYear W31001130762017 @default.
- W3100113076 countsByYear W31001130762018 @default.
- W3100113076 countsByYear W31001130762019 @default.
- W3100113076 countsByYear W31001130762020 @default.
- W3100113076 countsByYear W31001130762021 @default.
- W3100113076 countsByYear W31001130762022 @default.
- W3100113076 countsByYear W31001130762023 @default.
- W3100113076 crossrefType "journal-article" @default.
- W3100113076 hasAuthorship W3100113076A5000738770 @default.
- W3100113076 hasAuthorship W3100113076A5000845071 @default.
- W3100113076 hasAuthorship W3100113076A5010930372 @default.
- W3100113076 hasAuthorship W3100113076A5021247489 @default.
- W3100113076 hasAuthorship W3100113076A5051733054 @default.
- W3100113076 hasAuthorship W3100113076A5052925141 @default.
- W3100113076 hasAuthorship W3100113076A5054162426 @default.
- W3100113076 hasAuthorship W3100113076A5059503237 @default.
- W3100113076 hasAuthorship W3100113076A5067120945 @default.
- W3100113076 hasAuthorship W3100113076A5068780578 @default.
- W3100113076 hasAuthorship W3100113076A5072017129 @default.
- W3100113076 hasBestOaLocation W31001130761 @default.
- W3100113076 hasConcept C107816215 @default.
- W3100113076 hasConcept C110367647 @default.
- W3100113076 hasConcept C110879396 @default.
- W3100113076 hasConcept C120665830 @default.
- W3100113076 hasConcept C121332964 @default.
- W3100113076 hasConcept C136676167 @default.
- W3100113076 hasConcept C150835508 @default.
- W3100113076 hasConcept C177562468 @default.
- W3100113076 hasConcept C49040817 @default.
- W3100113076 hasConcept C70324355 @default.
- W3100113076 hasConceptScore W3100113076C107816215 @default.
- W3100113076 hasConceptScore W3100113076C110367647 @default.
- W3100113076 hasConceptScore W3100113076C110879396 @default.
- W3100113076 hasConceptScore W3100113076C120665830 @default.
- W3100113076 hasConceptScore W3100113076C121332964 @default.
- W3100113076 hasConceptScore W3100113076C136676167 @default.
- W3100113076 hasConceptScore W3100113076C150835508 @default.
- W3100113076 hasConceptScore W3100113076C177562468 @default.
- W3100113076 hasConceptScore W3100113076C49040817 @default.