Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100118890> ?p ?o ?g. }
- W3100118890 endingPage "1963" @default.
- W3100118890 startingPage "1963" @default.
- W3100118890 abstract "In recent times, several machine learning models have been built to aid in the prediction of diverse diseases and to minimize diagnostic errors made by clinicians. However, since most medical datasets seem to be imbalanced, conventional machine learning algorithms tend to underperform when trained with such data, especially in the prediction of the minority class. To address this challenge and proffer a robust model for the prediction of diseases, this paper introduces an approach that comprises of feature learning and classification stages that integrate an enhanced sparse autoencoder (SAE) and Softmax regression, respectively. In the SAE network, sparsity is achieved by penalizing the weights of the network, unlike conventional SAEs that penalize the activations within the hidden layers. For the classification task, the Softmax classifier is further optimized to achieve excellent performance. Hence, the proposed approach has the advantage of effective feature learning and robust classification performance. When employed for the prediction of three diseases, the proposed method obtained test accuracies of 98%, 97%, and 91% for chronic kidney disease, cervical cancer, and heart disease, respectively, which shows superior performance compared to other machine learning algorithms. The proposed approach also achieves comparable performance with other methods available in the recent literature." @default.
- W3100118890 created "2020-11-23" @default.
- W3100118890 creator A5013799533 @default.
- W3100118890 creator A5036607092 @default.
- W3100118890 creator A5088787533 @default.
- W3100118890 date "2020-11-20" @default.
- W3100118890 modified "2023-10-16" @default.
- W3100118890 title "Integrating Enhanced Sparse Autoencoder-Based Artificial Neural Network Technique and Softmax Regression for Medical Diagnosis" @default.
- W3100118890 cites W1980287119 @default.
- W3100118890 cites W1997702852 @default.
- W3100118890 cites W2111489302 @default.
- W3100118890 cites W2411631905 @default.
- W3100118890 cites W2531733772 @default.
- W3100118890 cites W2573280827 @default.
- W3100118890 cites W2596319557 @default.
- W3100118890 cites W2767118735 @default.
- W3100118890 cites W2794518042 @default.
- W3100118890 cites W2895906293 @default.
- W3100118890 cites W2900794383 @default.
- W3100118890 cites W2903099708 @default.
- W3100118890 cites W2910396952 @default.
- W3100118890 cites W2921446703 @default.
- W3100118890 cites W2921708219 @default.
- W3100118890 cites W2933013505 @default.
- W3100118890 cites W2940010972 @default.
- W3100118890 cites W2945523435 @default.
- W3100118890 cites W2949767632 @default.
- W3100118890 cites W2954788759 @default.
- W3100118890 cites W2955258650 @default.
- W3100118890 cites W2964457978 @default.
- W3100118890 cites W2968460293 @default.
- W3100118890 cites W2979377734 @default.
- W3100118890 cites W2997493322 @default.
- W3100118890 cites W3001125332 @default.
- W3100118890 cites W3004716932 @default.
- W3100118890 cites W3009734408 @default.
- W3100118890 cites W3011408237 @default.
- W3100118890 cites W3016979284 @default.
- W3100118890 cites W3018828627 @default.
- W3100118890 cites W3024017681 @default.
- W3100118890 cites W3035971798 @default.
- W3100118890 cites W3038122394 @default.
- W3100118890 cites W3043108808 @default.
- W3100118890 cites W3044659283 @default.
- W3100118890 cites W3047276250 @default.
- W3100118890 doi "https://doi.org/10.3390/electronics9111963" @default.
- W3100118890 hasPublicationYear "2020" @default.
- W3100118890 type Work @default.
- W3100118890 sameAs 3100118890 @default.
- W3100118890 citedByCount "18" @default.
- W3100118890 countsByYear W31001188902021 @default.
- W3100118890 countsByYear W31001188902022 @default.
- W3100118890 countsByYear W31001188902023 @default.
- W3100118890 crossrefType "journal-article" @default.
- W3100118890 hasAuthorship W3100118890A5013799533 @default.
- W3100118890 hasAuthorship W3100118890A5036607092 @default.
- W3100118890 hasAuthorship W3100118890A5088787533 @default.
- W3100118890 hasBestOaLocation W31001188901 @default.
- W3100118890 hasConcept C101738243 @default.
- W3100118890 hasConcept C105795698 @default.
- W3100118890 hasConcept C119857082 @default.
- W3100118890 hasConcept C12267149 @default.
- W3100118890 hasConcept C138885662 @default.
- W3100118890 hasConcept C153180895 @default.
- W3100118890 hasConcept C154945302 @default.
- W3100118890 hasConcept C188441871 @default.
- W3100118890 hasConcept C2776401178 @default.
- W3100118890 hasConcept C33923547 @default.
- W3100118890 hasConcept C41008148 @default.
- W3100118890 hasConcept C41895202 @default.
- W3100118890 hasConcept C50644808 @default.
- W3100118890 hasConcept C83546350 @default.
- W3100118890 hasConcept C95623464 @default.
- W3100118890 hasConceptScore W3100118890C101738243 @default.
- W3100118890 hasConceptScore W3100118890C105795698 @default.
- W3100118890 hasConceptScore W3100118890C119857082 @default.
- W3100118890 hasConceptScore W3100118890C12267149 @default.
- W3100118890 hasConceptScore W3100118890C138885662 @default.
- W3100118890 hasConceptScore W3100118890C153180895 @default.
- W3100118890 hasConceptScore W3100118890C154945302 @default.
- W3100118890 hasConceptScore W3100118890C188441871 @default.
- W3100118890 hasConceptScore W3100118890C2776401178 @default.
- W3100118890 hasConceptScore W3100118890C33923547 @default.
- W3100118890 hasConceptScore W3100118890C41008148 @default.
- W3100118890 hasConceptScore W3100118890C41895202 @default.
- W3100118890 hasConceptScore W3100118890C50644808 @default.
- W3100118890 hasConceptScore W3100118890C83546350 @default.
- W3100118890 hasConceptScore W3100118890C95623464 @default.
- W3100118890 hasIssue "11" @default.
- W3100118890 hasLocation W31001188901 @default.
- W3100118890 hasOpenAccess W3100118890 @default.
- W3100118890 hasPrimaryLocation W31001188901 @default.
- W3100118890 hasRelatedWork W2043096692 @default.
- W3100118890 hasRelatedWork W2610906757 @default.
- W3100118890 hasRelatedWork W2743258233 @default.
- W3100118890 hasRelatedWork W2900180889 @default.
- W3100118890 hasRelatedWork W2921182884 @default.
- W3100118890 hasRelatedWork W2998168123 @default.