Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100124795> ?p ?o ?g. }
- W3100124795 endingPage "039" @default.
- W3100124795 startingPage "039" @default.
- W3100124795 abstract "The Palatini formalism is developed for gravitational theories in flat geometries. We focus on two particularly interesting scenarios. First, we fix the connection to be metric compatible, but we follow a completely covariant approach by imposing the constraints with suitable Lagrange multipliers. For a general quadratic theory we show how torsion naturally propagates and we reproduce the Teleparallel Equivalent of General Relativity as a particular quadratic action that features an additional Lorentz symmetry. We then study the much less explored theories formulated in a geometry with neither curvature nor torsion, so that all the geometrical information is encoded in the non-metricity. We discuss how this geometrical framework leads to a purely inertial connection that can thus be completely removed by a coordinate gauge choice, the coincident gauge. From the quadratic theory we recover a simpler formulation of General Relativity in the form of the Einstein action, which enjoys an enhanced symmetry that reduces to a second linearised diffeomorphism at linear order. More general theories in both geometries can be formulated consistently by taking into account the inertial connection and the associated additional degrees of freedom. As immediate applications, the new cosmological equations and their Newtonian limit are considered, where the role of the lapse in the consistency of the equations is clarified, and the Schwarzschild black hole entropy is computed by evaluating the corresponding Euclidean action. We discuss how the boundary terms in the usual formulation of General Relativity are related to different choices of coordinates in its coincident version and show that in isotropic coordinates the Euclidean action is finite without the need to introduce boundary or normalisation terms." @default.
- W3100124795 created "2020-11-23" @default.
- W3100124795 creator A5003098893 @default.
- W3100124795 creator A5007778031 @default.
- W3100124795 creator A5082308692 @default.
- W3100124795 date "2018-08-28" @default.
- W3100124795 modified "2023-10-18" @default.
- W3100124795 title "Teleparallel Palatini theories" @default.
- W3100124795 cites W1507717731 @default.
- W3100124795 cites W1535245747 @default.
- W3100124795 cites W1638150781 @default.
- W3100124795 cites W1798235408 @default.
- W3100124795 cites W1800718723 @default.
- W3100124795 cites W1840877361 @default.
- W3100124795 cites W1841284891 @default.
- W3100124795 cites W1883366018 @default.
- W3100124795 cites W1970403628 @default.
- W3100124795 cites W1971017979 @default.
- W3100124795 cites W1982831263 @default.
- W3100124795 cites W1982971411 @default.
- W3100124795 cites W1988167148 @default.
- W3100124795 cites W1988998898 @default.
- W3100124795 cites W1992665289 @default.
- W3100124795 cites W2001582136 @default.
- W3100124795 cites W2003300092 @default.
- W3100124795 cites W2005261731 @default.
- W3100124795 cites W2007959513 @default.
- W3100124795 cites W2007959624 @default.
- W3100124795 cites W2008323598 @default.
- W3100124795 cites W2013273784 @default.
- W3100124795 cites W2016201553 @default.
- W3100124795 cites W2017308320 @default.
- W3100124795 cites W2018610091 @default.
- W3100124795 cites W2026040877 @default.
- W3100124795 cites W2027139691 @default.
- W3100124795 cites W2037580654 @default.
- W3100124795 cites W2044315591 @default.
- W3100124795 cites W2049378614 @default.
- W3100124795 cites W2058403242 @default.
- W3100124795 cites W2062912482 @default.
- W3100124795 cites W2067477988 @default.
- W3100124795 cites W2081133496 @default.
- W3100124795 cites W2085944742 @default.
- W3100124795 cites W2095666169 @default.
- W3100124795 cites W2096798206 @default.
- W3100124795 cites W2106178868 @default.
- W3100124795 cites W2108734736 @default.
- W3100124795 cites W2115593461 @default.
- W3100124795 cites W2122566302 @default.
- W3100124795 cites W2141872802 @default.
- W3100124795 cites W2144012213 @default.
- W3100124795 cites W2152915961 @default.
- W3100124795 cites W2156501412 @default.
- W3100124795 cites W2159768433 @default.
- W3100124795 cites W2160168896 @default.
- W3100124795 cites W2160781558 @default.
- W3100124795 cites W2168265713 @default.
- W3100124795 cites W2170218441 @default.
- W3100124795 cites W2175399942 @default.
- W3100124795 cites W2177433753 @default.
- W3100124795 cites W2221765788 @default.
- W3100124795 cites W2224218963 @default.
- W3100124795 cites W2253364474 @default.
- W3100124795 cites W2258712304 @default.
- W3100124795 cites W2264210179 @default.
- W3100124795 cites W2315645652 @default.
- W3100124795 cites W2476992408 @default.
- W3100124795 cites W2560360742 @default.
- W3100124795 cites W2609936972 @default.
- W3100124795 cites W2617464084 @default.
- W3100124795 cites W2622603792 @default.
- W3100124795 cites W2624056860 @default.
- W3100124795 cites W2627029658 @default.
- W3100124795 cites W2746813354 @default.
- W3100124795 cites W2750116332 @default.
- W3100124795 cites W2751656442 @default.
- W3100124795 cites W2755913144 @default.
- W3100124795 cites W2756296166 @default.
- W3100124795 cites W2765414634 @default.
- W3100124795 cites W2770059514 @default.
- W3100124795 cites W2773089192 @default.
- W3100124795 cites W2783925841 @default.
- W3100124795 cites W2787760118 @default.
- W3100124795 cites W2963562679 @default.
- W3100124795 cites W3098608818 @default.
- W3100124795 cites W3098637767 @default.
- W3100124795 cites W3099474923 @default.
- W3100124795 cites W3099718233 @default.
- W3100124795 cites W3099724649 @default.
- W3100124795 cites W3099854847 @default.
- W3100124795 cites W3100603007 @default.
- W3100124795 cites W3100736716 @default.
- W3100124795 cites W3101282732 @default.
- W3100124795 cites W3101307524 @default.
- W3100124795 cites W3101382810 @default.
- W3100124795 cites W3101923514 @default.
- W3100124795 cites W3103543020 @default.
- W3100124795 cites W3103760650 @default.