Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100142613> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W3100142613 abstract "Abstract In this case study, high resolution temperature array data, acquired during a Drill Stem Test (DST), were able to identify and quantify flow behind the liner. Quantifying the flow rate behind the liner between the production zones was of significant value to the operator to reduce the uncertainty in the Pressure Transient Analysis (PTA). The high resolution temperature array was deployed clamped to the outside of the Tubing Conveyed Perforating (TCP) guns, which were used to selectively perforate multiple zones. Using wireless acoustic technology the temperature data were transmitted to surface to enable real time feedback during the DST. A novel thermal heat exchange model was built that could take advantage of the high resolution temperature array data acquired during the entire test. The results of the model were compared to the real data to validate the results and provide accurate flow rate measurements of the flow behind the liner in real time during the test. A sensitivity study on the various model input parameters was also carried out to reduce the uncertainty in the thermal model, the results of which are detailed within the paper. Being able to quantify the flow behind the liner allowed the operator to adjust their PTA results and provided a more robust reservoir model. Typical thermal models in the industry are unable to quantify flow behind the liner in this environment. A new thermal model had to be developed that could take into account the complex heat transfer processes and take advantage of the high resolution thermal array data acquired during the DST. Despite the challenging wellbore environment during the test, the high resolution temperature data were used to provide a robust zonal flow confirmation and rate allocation during the flow periods. Whilst Distributed Temperature Systems (DTS) are gaining popularity in the oil and gas industry, typically the current technology does not provide the high resolution required to be able to quantify flow behind the casing. This new model, when combined with high resolution thermal array data, has wide ranging applications not only during the DST but also in long term completions where monitoring well integrity is a real industry challenge." @default.
- W3100142613 created "2020-11-23" @default.
- W3100142613 creator A5001736891 @default.
- W3100142613 creator A5002713167 @default.
- W3100142613 date "2020-11-12" @default.
- W3100142613 modified "2023-09-25" @default.
- W3100142613 title "Quantifying Flow Behind the Liner during a DST using High Resolution Thermal Array Technology and a Novel Thermal Model" @default.
- W3100142613 cites W2003914441 @default.
- W3100142613 cites W2005191981 @default.
- W3100142613 cites W2016155540 @default.
- W3100142613 cites W2078299021 @default.
- W3100142613 cites W2079020831 @default.
- W3100142613 cites W2254726841 @default.
- W3100142613 cites W2512296948 @default.
- W3100142613 cites W2982212010 @default.
- W3100142613 cites W651763398 @default.
- W3100142613 doi "https://doi.org/10.2118/202316-ms" @default.
- W3100142613 hasPublicationYear "2020" @default.
- W3100142613 type Work @default.
- W3100142613 sameAs 3100142613 @default.
- W3100142613 citedByCount "0" @default.
- W3100142613 crossrefType "proceedings-article" @default.
- W3100142613 hasAuthorship W3100142613A5001736891 @default.
- W3100142613 hasAuthorship W3100142613A5002713167 @default.
- W3100142613 hasConcept C121332964 @default.
- W3100142613 hasConcept C127413603 @default.
- W3100142613 hasConcept C153294291 @default.
- W3100142613 hasConcept C172120300 @default.
- W3100142613 hasConcept C192562407 @default.
- W3100142613 hasConcept C204530211 @default.
- W3100142613 hasConcept C21200559 @default.
- W3100142613 hasConcept C24326235 @default.
- W3100142613 hasConcept C24890656 @default.
- W3100142613 hasConcept C38349280 @default.
- W3100142613 hasConcept C39432304 @default.
- W3100142613 hasConcept C41008148 @default.
- W3100142613 hasConcept C50517652 @default.
- W3100142613 hasConcept C57879066 @default.
- W3100142613 hasConceptScore W3100142613C121332964 @default.
- W3100142613 hasConceptScore W3100142613C127413603 @default.
- W3100142613 hasConceptScore W3100142613C153294291 @default.
- W3100142613 hasConceptScore W3100142613C172120300 @default.
- W3100142613 hasConceptScore W3100142613C192562407 @default.
- W3100142613 hasConceptScore W3100142613C204530211 @default.
- W3100142613 hasConceptScore W3100142613C21200559 @default.
- W3100142613 hasConceptScore W3100142613C24326235 @default.
- W3100142613 hasConceptScore W3100142613C24890656 @default.
- W3100142613 hasConceptScore W3100142613C38349280 @default.
- W3100142613 hasConceptScore W3100142613C39432304 @default.
- W3100142613 hasConceptScore W3100142613C41008148 @default.
- W3100142613 hasConceptScore W3100142613C50517652 @default.
- W3100142613 hasConceptScore W3100142613C57879066 @default.
- W3100142613 hasLocation W31001426131 @default.
- W3100142613 hasOpenAccess W3100142613 @default.
- W3100142613 hasPrimaryLocation W31001426131 @default.
- W3100142613 hasRelatedWork W11745260 @default.
- W3100142613 hasRelatedWork W12125950 @default.
- W3100142613 hasRelatedWork W12520316 @default.
- W3100142613 hasRelatedWork W15150922 @default.
- W3100142613 hasRelatedWork W1834661 @default.
- W3100142613 hasRelatedWork W18848507 @default.
- W3100142613 hasRelatedWork W19221580 @default.
- W3100142613 hasRelatedWork W20724416 @default.
- W3100142613 hasRelatedWork W22819693 @default.
- W3100142613 hasRelatedWork W915315 @default.
- W3100142613 isParatext "false" @default.
- W3100142613 isRetracted "false" @default.
- W3100142613 magId "3100142613" @default.
- W3100142613 workType "article" @default.