Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100142921> ?p ?o ?g. }
- W3100142921 endingPage "A64" @default.
- W3100142921 startingPage "A64" @default.
- W3100142921 abstract "Aim. The giant solar filament was visible on the solar surface from 2011 November 8–23. Multiwavelength data from the Solar Dynamics Observatory (SDO) were used to examine counter-streaming flows within the spine of the filament. Methods. We use data from two SDO instruments, the Atmospheric Imaging Assembly (AIA) and the Helioseismic and Magnetic Imager (HMI), covering the whole filament, which stretched over more than half a solar diameter. H α images from the Kanzelhöhe Solar Observatory (KSO) provide context information of where the spine of the filament is defined and the barbs are located. We apply local correlation tracking (LCT) to a two-hour time series on 2011 November 16 of the AIA images to derive horizontal flow velocities of the filament. To enhance the contrast of the AIA images, noise adaptive fuzzy equalization (NAFE) is employed, which allows us to identify and quantify counter-streaming flows in the filament. We observe the same cool filament plasma in absorption in both H α and EUV images. Hence, the counter-streaming flows are directly related to this filament material in the spine. In addition, we use directional flow maps to highlight the counter-streaming flows. Results. We detect counter-streaming flows in the filament, which are visible in the time-lapse movies in all four examined AIA wavelength bands ( λ 171 Å, λ 193 Å, λ 304 Å, and λ 211 Å). In the time-lapse movies we see that these persistent flows lasted for at least two hours, although they became less prominent towards the end of the time series. Furthermore, by applying LCT to the images we clearly determine counter-streaming flows in time series of λ 171 Å and λ 193 Å images. In the λ 304 Å wavelength band, we only see minor indications for counter-streaming flows with LCT, while in the λ 211 Å wavelength band the counter-streaming flows are not detectable with this method. The diverse morphology of the filament in H α and EUV images is caused by different absorption processes, i.e., spectral line absorption and absorption by hydrogen and helium continua, respectively. The horizontal flows reach mean flow speeds of about 0.5 km s −1 for all wavelength bands. The highest horizontal flow speeds are identified in the λ 171 Å band with flow speeds of up to 2.5 km s −1 . The results are averaged over a time series of 90 minutes. Because the LCT sampling window has finite width, a spatial degradation cannot be avoided leading to lower estimates of the flow velocities as compared to feature tracking or Doppler measurements. The counter-streaming flows cover about 15–20% of the whole area of the EUV filament channel and are located in the central part of the spine. Conclusions. Compared to the ground-based observations, the absence of seeing effects in AIA observations reveal counter-streaming flows in the filament even with a moderate image scale of 0. ′′ 6 pixel −1 . Using a contrast enhancement technique, these flows can be detected and quantified with LCT in different wavelengths. We confirm the omnipresence of counter-streaming flows also in giant quiet-Sun filaments." @default.
- W3100142921 created "2020-11-23" @default.
- W3100142921 creator A5019690680 @default.
- W3100142921 creator A5045963565 @default.
- W3100142921 creator A5076335665 @default.
- W3100142921 date "2018-03-01" @default.
- W3100142921 modified "2023-10-17" @default.
- W3100142921 title "Counter-streaming flows in a giant quiet-Sun filament observed in the extreme ultraviolet" @default.
- W3100142921 cites W1503427063 @default.
- W3100142921 cites W1524633925 @default.
- W3100142921 cites W1535651291 @default.
- W3100142921 cites W1611487846 @default.
- W3100142921 cites W1635125275 @default.
- W3100142921 cites W1964197075 @default.
- W3100142921 cites W1975544581 @default.
- W3100142921 cites W1982339286 @default.
- W3100142921 cites W1990881969 @default.
- W3100142921 cites W2002827932 @default.
- W3100142921 cites W2023969611 @default.
- W3100142921 cites W2028573294 @default.
- W3100142921 cites W2045106666 @default.
- W3100142921 cites W2059880918 @default.
- W3100142921 cites W2067544642 @default.
- W3100142921 cites W2080236199 @default.
- W3100142921 cites W2081907750 @default.
- W3100142921 cites W2085646155 @default.
- W3100142921 cites W2094483427 @default.
- W3100142921 cites W2114774162 @default.
- W3100142921 cites W2118920907 @default.
- W3100142921 cites W2130743131 @default.
- W3100142921 cites W2141311110 @default.
- W3100142921 cites W2142234851 @default.
- W3100142921 cites W2143081800 @default.
- W3100142921 cites W2157640586 @default.
- W3100142921 cites W2158612941 @default.
- W3100142921 cites W2169559109 @default.
- W3100142921 cites W2185115233 @default.
- W3100142921 cites W2228543166 @default.
- W3100142921 cites W300271109 @default.
- W3100142921 cites W3099212646 @default.
- W3100142921 cites W3099257127 @default.
- W3100142921 cites W3100922844 @default.
- W3100142921 cites W3101495705 @default.
- W3100142921 cites W3103796921 @default.
- W3100142921 cites W3103972442 @default.
- W3100142921 cites W3104582244 @default.
- W3100142921 cites W4244992075 @default.
- W3100142921 cites W4300648717 @default.
- W3100142921 cites W3015688580 @default.
- W3100142921 doi "https://doi.org/10.1051/0004-6361/201730536" @default.
- W3100142921 hasPublicationYear "2018" @default.
- W3100142921 type Work @default.
- W3100142921 sameAs 3100142921 @default.
- W3100142921 citedByCount "16" @default.
- W3100142921 countsByYear W31001429212018 @default.
- W3100142921 countsByYear W31001429212019 @default.
- W3100142921 countsByYear W31001429212020 @default.
- W3100142921 countsByYear W31001429212021 @default.
- W3100142921 countsByYear W31001429212022 @default.
- W3100142921 countsByYear W31001429212023 @default.
- W3100142921 crossrefType "journal-article" @default.
- W3100142921 hasAuthorship W3100142921A5019690680 @default.
- W3100142921 hasAuthorship W3100142921A5045963565 @default.
- W3100142921 hasAuthorship W3100142921A5076335665 @default.
- W3100142921 hasBestOaLocation W31001429211 @default.
- W3100142921 hasConcept C115260700 @default.
- W3100142921 hasConcept C121332964 @default.
- W3100142921 hasConcept C14228908 @default.
- W3100142921 hasConcept C151730666 @default.
- W3100142921 hasConcept C153294291 @default.
- W3100142921 hasConcept C193145208 @default.
- W3100142921 hasConcept C196558001 @default.
- W3100142921 hasConcept C2779343474 @default.
- W3100142921 hasConcept C2781008069 @default.
- W3100142921 hasConcept C44870925 @default.
- W3100142921 hasConcept C54355233 @default.
- W3100142921 hasConcept C62520636 @default.
- W3100142921 hasConcept C86803240 @default.
- W3100142921 hasConceptScore W3100142921C115260700 @default.
- W3100142921 hasConceptScore W3100142921C121332964 @default.
- W3100142921 hasConceptScore W3100142921C14228908 @default.
- W3100142921 hasConceptScore W3100142921C151730666 @default.
- W3100142921 hasConceptScore W3100142921C153294291 @default.
- W3100142921 hasConceptScore W3100142921C193145208 @default.
- W3100142921 hasConceptScore W3100142921C196558001 @default.
- W3100142921 hasConceptScore W3100142921C2779343474 @default.
- W3100142921 hasConceptScore W3100142921C2781008069 @default.
- W3100142921 hasConceptScore W3100142921C44870925 @default.
- W3100142921 hasConceptScore W3100142921C54355233 @default.
- W3100142921 hasConceptScore W3100142921C62520636 @default.
- W3100142921 hasConceptScore W3100142921C86803240 @default.
- W3100142921 hasLocation W31001429211 @default.
- W3100142921 hasLocation W31001429212 @default.
- W3100142921 hasLocation W31001429213 @default.
- W3100142921 hasOpenAccess W3100142921 @default.
- W3100142921 hasPrimaryLocation W31001429211 @default.
- W3100142921 hasRelatedWork W1620184806 @default.
- W3100142921 hasRelatedWork W2056868817 @default.