Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100143645> ?p ?o ?g. }
- W3100143645 endingPage "662" @default.
- W3100143645 startingPage "627" @default.
- W3100143645 abstract "Abstract The calculus of variations is employed to find steady divergence-free velocity fields that maximize transport of a tracer between two parallel walls held at fixed concentration for one of two constraints on flow strength: a fixed value of the kinetic energy (mean square velocity) or a fixed value of the enstrophy (mean square vorticity). The optimizing flows consist of an array of (convection) cells of a particular aspect ratio $def xmlpi #1{}def mathsfbi #1{boldsymbol {mathsf {#1}}}let le =leqslant let leq =leqslant let ge =geqslant let geq =geqslant def Pr {mathit {Pr}}def Fr {mathit {Fr}}def Rey {mathit {Re}}varGamma $ . We solve the nonlinear Euler–Lagrange equations analytically for weak flows and numerically – as well as via matched asymptotic analysis in the fixed energy case – for strong flows. We report the results in terms of the Nusselt number ${mathit{Nu}}$ , a dimensionless measure of the tracer transport, as a function of the Péclet number ${mathit{Pe}}$ , a dimensionless measure of the strength of the flow. For both constraints, the maximum transport ${mathit{Nu}}_{mathit{MAX}}({mathit{Pe}})$ is realized in cells of decreasing aspect ratio $varGamma _{mathit{opt}}({mathit{Pe}})$ as ${mathit{Pe}}$ increases. For the fixed energy problem, ${mathit{Nu}}_{mathit{MAX}} sim {mathit{Pe}}$ and $varGamma _{mathit{opt}} sim {mathit{Pe}}^{-1/2}$ , while for the fixed enstrophy scenario, ${mathit{Nu}}_{mathit{MAX}} sim {mathit{Pe}}^{10/17}$ and $varGamma _{mathit{opt}} sim {mathit{Pe}}^{-0.36}$ . We interpret our results in the context of buoyancy-driven Rayleigh–Bénard convection problems that satisfy the flow intensity constraints, enabling us to investigate how the transport scalings compare with upper bounds on ${mathit{Nu}}$ expressed as a function of the Rayleigh number ${mathit{Ra}}$ . For steady convection in porous media, corresponding to the fixed energy problem, we find ${mathit{Nu}}_{mathit{MAX}} sim {mathit{Ra}}$ and $varGamma _{mathit{opt}} sim {mathit{Ra}}^{-1/2}$ , while for steady convection in a pure fluid layer between stress-free isothermal walls, corresponding to fixed enstrophy transport, ${mathit{Nu}}_{mathit{MAX}} sim {mathit{Ra}}^{5/12}$ and $varGamma _{mathit{opt}} sim {mathit{Ra}}^{-1/4}$ ." @default.
- W3100143645 created "2020-11-23" @default.
- W3100143645 creator A5031862814 @default.
- W3100143645 creator A5052597341 @default.
- W3100143645 creator A5052673105 @default.
- W3100143645 date "2014-06-24" @default.
- W3100143645 modified "2023-10-16" @default.
- W3100143645 title "Wall to wall optimal transport" @default.
- W3100143645 cites W1963558823 @default.
- W3100143645 cites W1967237247 @default.
- W3100143645 cites W1968493187 @default.
- W3100143645 cites W1968593934 @default.
- W3100143645 cites W1972664846 @default.
- W3100143645 cites W1974265776 @default.
- W3100143645 cites W1974516202 @default.
- W3100143645 cites W1981164044 @default.
- W3100143645 cites W1982376478 @default.
- W3100143645 cites W1985479922 @default.
- W3100143645 cites W1985812515 @default.
- W3100143645 cites W1991632947 @default.
- W3100143645 cites W1992124920 @default.
- W3100143645 cites W2005307381 @default.
- W3100143645 cites W2007483713 @default.
- W3100143645 cites W2017488298 @default.
- W3100143645 cites W2019874571 @default.
- W3100143645 cites W2027475406 @default.
- W3100143645 cites W2027886507 @default.
- W3100143645 cites W2032439449 @default.
- W3100143645 cites W2041854556 @default.
- W3100143645 cites W2052976727 @default.
- W3100143645 cites W2055257377 @default.
- W3100143645 cites W2060772602 @default.
- W3100143645 cites W2064892739 @default.
- W3100143645 cites W2071283074 @default.
- W3100143645 cites W2084390142 @default.
- W3100143645 cites W2088883763 @default.
- W3100143645 cites W2092533287 @default.
- W3100143645 cites W2096710604 @default.
- W3100143645 cites W2120922056 @default.
- W3100143645 cites W2129465944 @default.
- W3100143645 cites W2134763426 @default.
- W3100143645 cites W2145279323 @default.
- W3100143645 cites W2150149911 @default.
- W3100143645 cites W2150331419 @default.
- W3100143645 cites W2155452664 @default.
- W3100143645 cites W2163412644 @default.
- W3100143645 cites W2164666791 @default.
- W3100143645 cites W2169150637 @default.
- W3100143645 cites W2169786183 @default.
- W3100143645 cites W2313370484 @default.
- W3100143645 cites W2322441122 @default.
- W3100143645 cites W2331308056 @default.
- W3100143645 cites W2461479561 @default.
- W3100143645 cites W2997591036 @default.
- W3100143645 cites W3098548268 @default.
- W3100143645 cites W3098658577 @default.
- W3100143645 cites W3100227710 @default.
- W3100143645 cites W3101578233 @default.
- W3100143645 cites W4251707487 @default.
- W3100143645 cites W565460793 @default.
- W3100143645 doi "https://doi.org/10.1017/jfm.2014.306" @default.
- W3100143645 hasPublicationYear "2014" @default.
- W3100143645 type Work @default.
- W3100143645 sameAs 3100143645 @default.
- W3100143645 citedByCount "58" @default.
- W3100143645 countsByYear W31001436452013 @default.
- W3100143645 countsByYear W31001436452015 @default.
- W3100143645 countsByYear W31001436452016 @default.
- W3100143645 countsByYear W31001436452017 @default.
- W3100143645 countsByYear W31001436452018 @default.
- W3100143645 countsByYear W31001436452019 @default.
- W3100143645 countsByYear W31001436452020 @default.
- W3100143645 countsByYear W31001436452021 @default.
- W3100143645 countsByYear W31001436452022 @default.
- W3100143645 countsByYear W31001436452023 @default.
- W3100143645 crossrefType "journal-article" @default.
- W3100143645 hasAuthorship W3100143645A5031862814 @default.
- W3100143645 hasAuthorship W3100143645A5052597341 @default.
- W3100143645 hasAuthorship W3100143645A5052673105 @default.
- W3100143645 hasBestOaLocation W31001436452 @default.
- W3100143645 hasConcept C106836276 @default.
- W3100143645 hasConcept C10899652 @default.
- W3100143645 hasConcept C114614502 @default.
- W3100143645 hasConcept C121332964 @default.
- W3100143645 hasConcept C130230704 @default.
- W3100143645 hasConcept C140820882 @default.
- W3100143645 hasConcept C151730666 @default.
- W3100143645 hasConcept C178944513 @default.
- W3100143645 hasConcept C182748727 @default.
- W3100143645 hasConcept C186370098 @default.
- W3100143645 hasConcept C196558001 @default.
- W3100143645 hasConcept C200114574 @default.
- W3100143645 hasConcept C24872484 @default.
- W3100143645 hasConcept C2779343474 @default.
- W3100143645 hasConcept C2780009758 @default.
- W3100143645 hasConcept C33923547 @default.
- W3100143645 hasConcept C37914503 @default.
- W3100143645 hasConcept C41008148 @default.