Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100162678> ?p ?o ?g. }
- W3100162678 endingPage "7143" @default.
- W3100162678 startingPage "7104" @default.
- W3100162678 abstract "Undirected graphical models have been successfully used to jointly model the spatial and the spectral dependencies in earth observing hyperspectral images. They produce less noisy, smooth, and spatially coherent land cover maps and give top accuracies on many datasets. Moreover, they can easily be combined with other state-of-the-art approaches, such as deep learning. This has made them an essential tool for remote sensing researchers and practitioners. However, graphical models have not been easily accessible to the larger remote sensing community as they are not discussed in standard remote sensing textbooks and not included in the popular remote sensing software and toolboxes. In this tutorial, we provide a theoretical introduction to Markov random fields and conditional random fields based spatial-spectral classification for land cover mapping along with a detailed step-by-step practical guide on applying these methods using freely available software. Furthermore, the discussed methods are benchmarked on four public hyperspectral datasets for a fair comparison among themselves and easy comparison with the vast number of methods in literature which use the same datasets. The source code necessary to reproduce all the results in the paper is published on-line to make it easier for the readers to apply these techniques to different remote sensing problems." @default.
- W3100162678 created "2020-11-23" @default.
- W3100162678 creator A5018170783 @default.
- W3100162678 creator A5086376779 @default.
- W3100162678 date "2018-04-26" @default.
- W3100162678 modified "2023-10-16" @default.
- W3100162678 title "A tutorial on modelling and inference in undirected graphical models for hyperspectral image analysis" @default.
- W3100162678 cites W1590946397 @default.
- W3100162678 cites W1949713295 @default.
- W3100162678 cites W1950365613 @default.
- W3100162678 cites W1972814520 @default.
- W3100162678 cites W1974524700 @default.
- W3100162678 cites W1995653526 @default.
- W3100162678 cites W1997259586 @default.
- W3100162678 cites W2000803298 @default.
- W3100162678 cites W2001298023 @default.
- W3100162678 cites W2003022533 @default.
- W3100162678 cites W2012749606 @default.
- W3100162678 cites W2016860790 @default.
- W3100162678 cites W2020631986 @default.
- W3100162678 cites W2021597230 @default.
- W3100162678 cites W2025803711 @default.
- W3100162678 cites W2028469338 @default.
- W3100162678 cites W2028623420 @default.
- W3100162678 cites W2029316659 @default.
- W3100162678 cites W2033667660 @default.
- W3100162678 cites W2034644270 @default.
- W3100162678 cites W2044465660 @default.
- W3100162678 cites W2052160904 @default.
- W3100162678 cites W2053852479 @default.
- W3100162678 cites W2059217921 @default.
- W3100162678 cites W2062432961 @default.
- W3100162678 cites W2063904099 @default.
- W3100162678 cites W2064604707 @default.
- W3100162678 cites W2066941820 @default.
- W3100162678 cites W2073650477 @default.
- W3100162678 cites W2080728225 @default.
- W3100162678 cites W2081155276 @default.
- W3100162678 cites W2084724634 @default.
- W3100162678 cites W2087120756 @default.
- W3100162678 cites W2096038730 @default.
- W3100162678 cites W2097043713 @default.
- W3100162678 cites W2101309634 @default.
- W3100162678 cites W2101365302 @default.
- W3100162678 cites W2101711129 @default.
- W3100162678 cites W2102150301 @default.
- W3100162678 cites W2107588225 @default.
- W3100162678 cites W2107884096 @default.
- W3100162678 cites W2107966405 @default.
- W3100162678 cites W2111256709 @default.
- W3100162678 cites W2113137767 @default.
- W3100162678 cites W2113199901 @default.
- W3100162678 cites W2114220616 @default.
- W3100162678 cites W2114819256 @default.
- W3100162678 cites W2116877738 @default.
- W3100162678 cites W2118246710 @default.
- W3100162678 cites W2119897980 @default.
- W3100162678 cites W2130674596 @default.
- W3100162678 cites W2131864940 @default.
- W3100162678 cites W2134594501 @default.
- W3100162678 cites W2136251662 @default.
- W3100162678 cites W2143516773 @default.
- W3100162678 cites W2151773573 @default.
- W3100162678 cites W2152438175 @default.
- W3100162678 cites W2152440692 @default.
- W3100162678 cites W2153635508 @default.
- W3100162678 cites W2158400785 @default.
- W3100162678 cites W2163721270 @default.
- W3100162678 cites W2164330327 @default.
- W3100162678 cites W2164437025 @default.
- W3100162678 cites W2164626806 @default.
- W3100162678 cites W2166229804 @default.
- W3100162678 cites W2166302761 @default.
- W3100162678 cites W2167219413 @default.
- W3100162678 cites W2411643563 @default.
- W3100162678 cites W2572303978 @default.
- W3100162678 cites W2585293115 @default.
- W3100162678 cites W2597563280 @default.
- W3100162678 cites W2621331406 @default.
- W3100162678 cites W2782522152 @default.
- W3100162678 cites W28766783 @default.
- W3100162678 cites W35586085 @default.
- W3100162678 cites W4200320221 @default.
- W3100162678 cites W4206192903 @default.
- W3100162678 cites W4206733017 @default.
- W3100162678 cites W4244565819 @default.
- W3100162678 cites W79315950 @default.
- W3100162678 doi "https://doi.org/10.1080/01431161.2018.1465614" @default.
- W3100162678 hasPublicationYear "2018" @default.
- W3100162678 type Work @default.
- W3100162678 sameAs 3100162678 @default.
- W3100162678 citedByCount "7" @default.
- W3100162678 countsByYear W31001626782018 @default.
- W3100162678 countsByYear W31001626782019 @default.
- W3100162678 countsByYear W31001626782020 @default.
- W3100162678 countsByYear W31001626782021 @default.
- W3100162678 countsByYear W31001626782022 @default.
- W3100162678 crossrefType "journal-article" @default.