Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100171194> ?p ?o ?g. }
- W3100171194 endingPage "213093" @default.
- W3100171194 startingPage "213078" @default.
- W3100171194 abstract "Schizophrenia is a devastating disease with a prevalence of 1% in populations around the world. Current diagnostic techniques of schizophrenia and high-risk population are based on subjective psychiatric interviews. Early diagnosis and intervention can mitigate progression and improve treatment outcomes. However, the lack of biomarkers that support objective examinations has been a long-term bottleneck in clinical diagnosis and assessment of schizophrenia and its high-risk state. In the present study, resting-state 128-channel electroencephalogram (EEG) data were acquired from 65 participants, including clinically-stable individuals with first-episode schizophrenia (FESZ), individuals at ultra-high-risk (UHR) and high-risk (HR), and healthy controls (HC). Microstate analysis was used to assess the dynamics of functional networks in these participants. Three features were extracted for each class of microstate (A, B, C, D, E, F): duration, occurrence and time coverage. Furthermore, clinical examinations and cognitive tests were performed. Behavioral results showed poorer performances in the participants as the disease progressed. Moreover, microstate features computed from resting-state EEG microstates (especially microstate class D) were capable of distinguishing the four groups of individuals. Combined biomarkers including clinical examinations, cognitive tests and EEG microstate parameters were identified as a potential effective diagnostic tool, achieving the highest classification performance using the random forest model compared with the support vector machine (SVM) and long short term memory (LSTM) networks, with an average classification of 92%, mean sensitivity of 91.8%, and specificity of 90.8% among the four groups, which were much higher than that only using behavioral features. The results demonstrate that microstate-based indicators together with behavioral results may act as biomarkers for early diagnosis and prediction of at-risk individuals of schizophrenia. Furthermore, our findings illustrate the potential use of resting-state EEG in clinical screening, classification and quantitative evaluation of patients with neurodevelopmental disorders." @default.
- W3100171194 created "2020-11-23" @default.
- W3100171194 creator A5014154811 @default.
- W3100171194 creator A5030064573 @default.
- W3100171194 creator A5058927106 @default.
- W3100171194 creator A5075102795 @default.
- W3100171194 creator A5082531587 @default.
- W3100171194 date "2020-01-01" @default.
- W3100171194 modified "2023-10-17" @default.
- W3100171194 title "Biomarkers for Prediction of Schizophrenia: Insights From Resting-State EEG Microstates" @default.
- W3100171194 cites W1506091216 @default.
- W3100171194 cites W1760829075 @default.
- W3100171194 cites W1902335101 @default.
- W3100171194 cites W1931134709 @default.
- W3100171194 cites W1970695058 @default.
- W3100171194 cites W1971899839 @default.
- W3100171194 cites W1972125991 @default.
- W3100171194 cites W1976522288 @default.
- W3100171194 cites W1978876811 @default.
- W3100171194 cites W1979612257 @default.
- W3100171194 cites W1992857340 @default.
- W3100171194 cites W1993889588 @default.
- W3100171194 cites W2004469093 @default.
- W3100171194 cites W2008113502 @default.
- W3100171194 cites W2009494091 @default.
- W3100171194 cites W2011251121 @default.
- W3100171194 cites W2015479122 @default.
- W3100171194 cites W2015739928 @default.
- W3100171194 cites W2019363012 @default.
- W3100171194 cites W2039576727 @default.
- W3100171194 cites W2044714437 @default.
- W3100171194 cites W2054655287 @default.
- W3100171194 cites W2057251357 @default.
- W3100171194 cites W2057569029 @default.
- W3100171194 cites W2074117397 @default.
- W3100171194 cites W2083015405 @default.
- W3100171194 cites W2086572644 @default.
- W3100171194 cites W2089188198 @default.
- W3100171194 cites W2093265755 @default.
- W3100171194 cites W2099943815 @default.
- W3100171194 cites W2100959503 @default.
- W3100171194 cites W2102684787 @default.
- W3100171194 cites W2106873519 @default.
- W3100171194 cites W2109642345 @default.
- W3100171194 cites W2111406541 @default.
- W3100171194 cites W2112572641 @default.
- W3100171194 cites W2113226993 @default.
- W3100171194 cites W2121366540 @default.
- W3100171194 cites W2128495200 @default.
- W3100171194 cites W2131216884 @default.
- W3100171194 cites W2131775488 @default.
- W3100171194 cites W2134761508 @default.
- W3100171194 cites W2135392214 @default.
- W3100171194 cites W2136512510 @default.
- W3100171194 cites W2142490264 @default.
- W3100171194 cites W2152728592 @default.
- W3100171194 cites W2153635508 @default.
- W3100171194 cites W2155945003 @default.
- W3100171194 cites W2156192068 @default.
- W3100171194 cites W2159722604 @default.
- W3100171194 cites W2180427972 @default.
- W3100171194 cites W2296519936 @default.
- W3100171194 cites W2478760458 @default.
- W3100171194 cites W2519030278 @default.
- W3100171194 cites W2732810241 @default.
- W3100171194 cites W2757893427 @default.
- W3100171194 cites W2772704314 @default.
- W3100171194 cites W2773595401 @default.
- W3100171194 cites W2911964244 @default.
- W3100171194 cites W2914512070 @default.
- W3100171194 cites W2922644959 @default.
- W3100171194 cites W2932133012 @default.
- W3100171194 cites W2944781452 @default.
- W3100171194 cites W2946037176 @default.
- W3100171194 cites W2947168485 @default.
- W3100171194 cites W2953079170 @default.
- W3100171194 cites W2963355311 @default.
- W3100171194 cites W2966445366 @default.
- W3100171194 cites W2969803020 @default.
- W3100171194 cites W3003973800 @default.
- W3100171194 cites W3036765640 @default.
- W3100171194 cites W3091518838 @default.
- W3100171194 cites W4211063728 @default.
- W3100171194 cites W4232008463 @default.
- W3100171194 doi "https://doi.org/10.1109/access.2020.3037658" @default.
- W3100171194 hasPublicationYear "2020" @default.
- W3100171194 type Work @default.
- W3100171194 sameAs 3100171194 @default.
- W3100171194 citedByCount "17" @default.
- W3100171194 countsByYear W31001711942021 @default.
- W3100171194 countsByYear W31001711942022 @default.
- W3100171194 countsByYear W31001711942023 @default.
- W3100171194 crossrefType "journal-article" @default.
- W3100171194 hasAuthorship W3100171194A5014154811 @default.
- W3100171194 hasAuthorship W3100171194A5030064573 @default.
- W3100171194 hasAuthorship W3100171194A5058927106 @default.
- W3100171194 hasAuthorship W3100171194A5075102795 @default.
- W3100171194 hasAuthorship W3100171194A5082531587 @default.