Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100171278> ?p ?o ?g. }
- W3100171278 endingPage "296" @default.
- W3100171278 startingPage "296" @default.
- W3100171278 abstract "Many modern statistically efficient methods come with tremendous computational challenges, often leading to large-scale optimisation problems. In this work, we examine such computational issues for recently developed estimation methods in nonparametric regression with a specific view on image denoising. We consider in particular certain variational multiscale estimators which are statistically optimal in minimax sense, yet computationally intensive. Such an estimator is computed as the minimiser of a smoothness functional (e.g., TV norm) over the class of all estimators such that none of its coefficients with respect to a given multiscale dictionary is statistically significant. The so obtained multiscale Nemirowski-Dantzig estimator (MIND) can incorporate any convex smoothness functional and combine it with a proper dictionary including wavelets, curvelets and shearlets. The computation of MIND in general requires to solve a high-dimensional constrained convex optimisation problem with a specific structure of the constraints induced by the statistical multiscale testing criterion. To solve this explicitly, we discuss three different algorithmic approaches: the Chambolle-Pock, ADMM and semismooth Newton algorithms. Algorithmic details and an explicit implementation is presented and the solutions are then compared numerically in a simulation study and on various test images. We thereby recommend the Chambolle-Pock algorithm in most cases for its fast convergence. We stress that our analysis can also be transferred to signal recovery and other denoising problems to recover more general objects whenever it is possible to borrow statistical strength from data patches of similar object structure." @default.
- W3100171278 created "2020-11-23" @default.
- W3100171278 creator A5003259289 @default.
- W3100171278 creator A5054830960 @default.
- W3100171278 creator A5060132753 @default.
- W3100171278 creator A5087767807 @default.
- W3100171278 date "2020-11-13" @default.
- W3100171278 modified "2023-09-26" @default.
- W3100171278 title "Variational Multiscale Nonparametric Regression: Algorithms and Implementation" @default.
- W3100171278 cites W1498939395 @default.
- W3100171278 cites W1549918636 @default.
- W3100171278 cites W1554640808 @default.
- W3100171278 cites W1632601927 @default.
- W3100171278 cites W191129667 @default.
- W3100171278 cites W1971713783 @default.
- W3100171278 cites W1973627955 @default.
- W3100171278 cites W1989016323 @default.
- W3100171278 cites W2005089986 @default.
- W3100171278 cites W2005140191 @default.
- W3100171278 cites W2008419427 @default.
- W3100171278 cites W2018711500 @default.
- W3100171278 cites W2023005931 @default.
- W3100171278 cites W2031907131 @default.
- W3100171278 cites W2037015107 @default.
- W3100171278 cites W2038448425 @default.
- W3100171278 cites W2038845890 @default.
- W3100171278 cites W2046119925 @default.
- W3100171278 cites W2047043241 @default.
- W3100171278 cites W2050958540 @default.
- W3100171278 cites W2057624533 @default.
- W3100171278 cites W2070289182 @default.
- W3100171278 cites W2079724595 @default.
- W3100171278 cites W2092543127 @default.
- W3100171278 cites W2092663520 @default.
- W3100171278 cites W2103559027 @default.
- W3100171278 cites W2124221754 @default.
- W3100171278 cites W2125676375 @default.
- W3100171278 cites W2128011810 @default.
- W3100171278 cites W2133264613 @default.
- W3100171278 cites W2133665775 @default.
- W3100171278 cites W2140286963 @default.
- W3100171278 cites W2141195893 @default.
- W3100171278 cites W2146842127 @default.
- W3100171278 cites W2147573997 @default.
- W3100171278 cites W2158940042 @default.
- W3100171278 cites W2163806219 @default.
- W3100171278 cites W2169253121 @default.
- W3100171278 cites W2335403142 @default.
- W3100171278 cites W2502759836 @default.
- W3100171278 cites W2508457857 @default.
- W3100171278 cites W2529880168 @default.
- W3100171278 cites W2592334098 @default.
- W3100171278 cites W2964185338 @default.
- W3100171278 cites W3009675683 @default.
- W3100171278 cites W3032281775 @default.
- W3100171278 cites W3100335443 @default.
- W3100171278 cites W3103841646 @default.
- W3100171278 cites W3104992617 @default.
- W3100171278 cites W3105340263 @default.
- W3100171278 cites W3123980519 @default.
- W3100171278 cites W4301021743 @default.
- W3100171278 doi "https://doi.org/10.3390/a13110296" @default.
- W3100171278 hasPublicationYear "2020" @default.
- W3100171278 type Work @default.
- W3100171278 sameAs 3100171278 @default.
- W3100171278 citedByCount "1" @default.
- W3100171278 countsByYear W31001712782022 @default.
- W3100171278 crossrefType "journal-article" @default.
- W3100171278 hasAuthorship W3100171278A5003259289 @default.
- W3100171278 hasAuthorship W3100171278A5054830960 @default.
- W3100171278 hasAuthorship W3100171278A5060132753 @default.
- W3100171278 hasAuthorship W3100171278A5087767807 @default.
- W3100171278 hasBestOaLocation W31001712781 @default.
- W3100171278 hasConcept C102366305 @default.
- W3100171278 hasConcept C102634674 @default.
- W3100171278 hasConcept C105795698 @default.
- W3100171278 hasConcept C112680207 @default.
- W3100171278 hasConcept C11413529 @default.
- W3100171278 hasConcept C126255220 @default.
- W3100171278 hasConcept C131720326 @default.
- W3100171278 hasConcept C134306372 @default.
- W3100171278 hasConcept C149728462 @default.
- W3100171278 hasConcept C154945302 @default.
- W3100171278 hasConcept C157972887 @default.
- W3100171278 hasConcept C163294075 @default.
- W3100171278 hasConcept C17744445 @default.
- W3100171278 hasConcept C185429906 @default.
- W3100171278 hasConcept C191795146 @default.
- W3100171278 hasConcept C196216189 @default.
- W3100171278 hasConcept C199539241 @default.
- W3100171278 hasConcept C2524010 @default.
- W3100171278 hasConcept C28826006 @default.
- W3100171278 hasConcept C33923547 @default.
- W3100171278 hasConcept C41008148 @default.
- W3100171278 hasConcept C47432892 @default.
- W3100171278 hasConcept C67795661 @default.
- W3100171278 hasConceptScore W3100171278C102366305 @default.
- W3100171278 hasConceptScore W3100171278C102634674 @default.