Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100177712> ?p ?o ?g. }
- W3100177712 endingPage "193" @default.
- W3100177712 startingPage "193" @default.
- W3100177712 abstract "The structure of steady axisymmetric force-free magnetosphere of a Kerr black hole (BH) is governed by a second-order partial differential equation of $A_phi$ depending on two free functions $Omega(A_phi)$ and $I(A_phi)$, where $A_phi$ is the $phi$ component of the vector potential of the electromagnetic field, $Omega$ is the angular velocity of the magnetic field lines and $I$ is the poloidal electric current. In this paper, we investigate the solution uniqueness. Taking asymptotically uniform field as an example, analytic studies imply that there are infinitely many solutions approaching uniform field at infinity, while only a unique one is found in general relativistic magnetohydrodynamic simulations. To settle down the disagreement, we reinvestigate the structure of the governing equation and numerically solve it with given constraint condition and boundary condition. We find that the constraint condition (field lines smoothly crossing the light surface (LS)) and boundary conditions at horizon and at infinity are connected via radiation conditions at horizon and at infinity, rather than being independent. With appropriate constraint condition and boundary condition, we numerically solve the governing equation and find a unique solution. Contrary to naive expectation, our numerical solution yields a discontinuity in the angular velocity of the field lines and a current sheet along the last field line crossing the event horizon. We also briefly discuss the applicability of the perturbation approach to solving the governing equation." @default.
- W3100177712 created "2020-11-23" @default.
- W3100177712 creator A5042964412 @default.
- W3100177712 creator A5049426818 @default.
- W3100177712 creator A5078396598 @default.
- W3100177712 date "2017-02-21" @default.
- W3100177712 modified "2023-09-26" @default.
- W3100177712 title "Analytic Properties of Force-free Jets in the Kerr Spacetime. III. Uniform Field Solution" @default.
- W3100177712 cites W1577424494 @default.
- W3100177712 cites W1615310955 @default.
- W3100177712 cites W1697983746 @default.
- W3100177712 cites W1889179451 @default.
- W3100177712 cites W1937766568 @default.
- W3100177712 cites W1963722799 @default.
- W3100177712 cites W1970566880 @default.
- W3100177712 cites W1975659952 @default.
- W3100177712 cites W1976218099 @default.
- W3100177712 cites W1977436836 @default.
- W3100177712 cites W1978292538 @default.
- W3100177712 cites W1978930760 @default.
- W3100177712 cites W1981293781 @default.
- W3100177712 cites W1986223765 @default.
- W3100177712 cites W2001623247 @default.
- W3100177712 cites W2017639412 @default.
- W3100177712 cites W2020637596 @default.
- W3100177712 cites W2023347320 @default.
- W3100177712 cites W2026229442 @default.
- W3100177712 cites W2031651989 @default.
- W3100177712 cites W2033972524 @default.
- W3100177712 cites W2037011277 @default.
- W3100177712 cites W2039004761 @default.
- W3100177712 cites W2041678977 @default.
- W3100177712 cites W2044384010 @default.
- W3100177712 cites W2045381971 @default.
- W3100177712 cites W2047923637 @default.
- W3100177712 cites W2051947722 @default.
- W3100177712 cites W2055910052 @default.
- W3100177712 cites W2056595757 @default.
- W3100177712 cites W2057623330 @default.
- W3100177712 cites W2058593462 @default.
- W3100177712 cites W2064049132 @default.
- W3100177712 cites W2065596066 @default.
- W3100177712 cites W2066469971 @default.
- W3100177712 cites W2068876336 @default.
- W3100177712 cites W2078623633 @default.
- W3100177712 cites W2092087927 @default.
- W3100177712 cites W2101901328 @default.
- W3100177712 cites W2102019107 @default.
- W3100177712 cites W2108363925 @default.
- W3100177712 cites W2124169083 @default.
- W3100177712 cites W2124562115 @default.
- W3100177712 cites W2133916915 @default.
- W3100177712 cites W2137746285 @default.
- W3100177712 cites W2162146350 @default.
- W3100177712 cites W2168275001 @default.
- W3100177712 cites W2175528414 @default.
- W3100177712 cites W2208118768 @default.
- W3100177712 cites W2339569779 @default.
- W3100177712 cites W2475037742 @default.
- W3100177712 cites W2761969832 @default.
- W3100177712 cites W2950540487 @default.
- W3100177712 cites W2963469479 @default.
- W3100177712 cites W3092445460 @default.
- W3100177712 cites W3099909845 @default.
- W3100177712 cites W3099998938 @default.
- W3100177712 cites W3100007046 @default.
- W3100177712 cites W3100781448 @default.
- W3100177712 cites W3101405899 @default.
- W3100177712 cites W3101928587 @default.
- W3100177712 cites W3102281677 @default.
- W3100177712 cites W3102758191 @default.
- W3100177712 cites W3102842437 @default.
- W3100177712 cites W3104181489 @default.
- W3100177712 cites W3104625986 @default.
- W3100177712 cites W3104926070 @default.
- W3100177712 cites W3106467044 @default.
- W3100177712 cites W416810191 @default.
- W3100177712 doi "https://doi.org/10.3847/1538-4357/aa5c36" @default.
- W3100177712 hasPublicationYear "2017" @default.
- W3100177712 type Work @default.
- W3100177712 sameAs 3100177712 @default.
- W3100177712 citedByCount "15" @default.
- W3100177712 countsByYear W31001777122017 @default.
- W3100177712 countsByYear W31001777122018 @default.
- W3100177712 countsByYear W31001777122019 @default.
- W3100177712 countsByYear W31001777122020 @default.
- W3100177712 countsByYear W31001777122021 @default.
- W3100177712 countsByYear W31001777122022 @default.
- W3100177712 crossrefType "journal-article" @default.
- W3100177712 hasAuthorship W3100177712A5042964412 @default.
- W3100177712 hasAuthorship W3100177712A5049426818 @default.
- W3100177712 hasAuthorship W3100177712A5078396598 @default.
- W3100177712 hasBestOaLocation W31001777122 @default.
- W3100177712 hasConcept C115260700 @default.
- W3100177712 hasConcept C121332964 @default.
- W3100177712 hasConcept C130187892 @default.
- W3100177712 hasConcept C134306372 @default.
- W3100177712 hasConcept C148292158 @default.