Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100180829> ?p ?o ?g. }
- W3100180829 endingPage "11" @default.
- W3100180829 startingPage "1" @default.
- W3100180829 abstract "Although one-stage detectors, for example, YOLOv3, SSD, and RefineDet, based on the convolutional neural networks (CNNs) have been widely used in object detection, their localization accuracy of the defects is still poor and the problem of repeated detection still occurs. This article proposes a surface defects detection method based on improved YOLOv3 for sawn lumbers. First, a Gaussian YOLOv3 is used to estimate the coordinates and the localization uncertainty of the prediction box. Then, the complete intersection over union (CIoU) loss function is adopted to replace the intersection over union (IoU) loss for non-maximum suppression (NMS), because it considers the overlap area, the center point, and the aspect ratio, and thus can reduce the repeated detection. Finally, this article establishes two data sets, that is, the rubber lumber data set containing four kinds of defects and the pine lumber data set containing two kinds of defects. In total, there are 16 633 images and 6705 annotated images in these two data sets. The effectiveness of the proposed method has been validated by experiments. Our data sets are available at https://github.com/WenHe-Hnu/sawn-lumber-dataset." @default.
- W3100180829 created "2020-11-23" @default.
- W3100180829 creator A5049159266 @default.
- W3100180829 creator A5055621451 @default.
- W3100180829 creator A5085476806 @default.
- W3100180829 creator A5087766135 @default.
- W3100180829 date "2021-01-01" @default.
- W3100180829 modified "2023-10-18" @default.
- W3100180829 title "An Accurate and Real-Time Surface Defects Detection Method for Sawn Lumber" @default.
- W3100180829 cites W1985345361 @default.
- W3100180829 cites W1988299413 @default.
- W3100180829 cites W1995852018 @default.
- W3100180829 cites W1996860168 @default.
- W3100180829 cites W2021048678 @default.
- W3100180829 cites W2031489346 @default.
- W3100180829 cites W2037227137 @default.
- W3100180829 cites W2044465660 @default.
- W3100180829 cites W2049700819 @default.
- W3100180829 cites W2072007842 @default.
- W3100180829 cites W2083141205 @default.
- W3100180829 cites W2102605133 @default.
- W3100180829 cites W2109255472 @default.
- W3100180829 cites W2129305389 @default.
- W3100180829 cites W2129440600 @default.
- W3100180829 cites W2213486648 @default.
- W3100180829 cites W2271799811 @default.
- W3100180829 cites W2276016727 @default.
- W3100180829 cites W2474320072 @default.
- W3100180829 cites W2547340572 @default.
- W3100180829 cites W2558355904 @default.
- W3100180829 cites W2565639579 @default.
- W3100180829 cites W2569272946 @default.
- W3100180829 cites W2584131486 @default.
- W3100180829 cites W2589306531 @default.
- W3100180829 cites W2590213371 @default.
- W3100180829 cites W2605132254 @default.
- W3100180829 cites W2605958287 @default.
- W3100180829 cites W2740119256 @default.
- W3100180829 cites W2745150820 @default.
- W3100180829 cites W2768052468 @default.
- W3100180829 cites W2785594077 @default.
- W3100180829 cites W2789305678 @default.
- W3100180829 cites W2886904239 @default.
- W3100180829 cites W2890518964 @default.
- W3100180829 cites W2895301365 @default.
- W3100180829 cites W2895340898 @default.
- W3100180829 cites W2900932095 @default.
- W3100180829 cites W2910379251 @default.
- W3100180829 cites W2910669864 @default.
- W3100180829 cites W2916869646 @default.
- W3100180829 cites W2948500402 @default.
- W3100180829 cites W2962766617 @default.
- W3100180829 cites W2963037989 @default.
- W3100180829 cites W2963351448 @default.
- W3100180829 cites W2963604034 @default.
- W3100180829 cites W2963786238 @default.
- W3100180829 cites W2969643617 @default.
- W3100180829 cites W2973130260 @default.
- W3100180829 cites W2978436092 @default.
- W3100180829 cites W2979910668 @default.
- W3100180829 cites W2981318525 @default.
- W3100180829 cites W2981958729 @default.
- W3100180829 cites W2986442261 @default.
- W3100180829 cites W3106250896 @default.
- W3100180829 cites W639708223 @default.
- W3100180829 cites W803264970 @default.
- W3100180829 doi "https://doi.org/10.1109/tim.2020.3024431" @default.
- W3100180829 hasPublicationYear "2021" @default.
- W3100180829 type Work @default.
- W3100180829 sameAs 3100180829 @default.
- W3100180829 citedByCount "18" @default.
- W3100180829 countsByYear W31001808292021 @default.
- W3100180829 countsByYear W31001808292022 @default.
- W3100180829 countsByYear W31001808292023 @default.
- W3100180829 crossrefType "journal-article" @default.
- W3100180829 hasAuthorship W3100180829A5049159266 @default.
- W3100180829 hasAuthorship W3100180829A5055621451 @default.
- W3100180829 hasAuthorship W3100180829A5085476806 @default.
- W3100180829 hasAuthorship W3100180829A5087766135 @default.
- W3100180829 hasConcept C121332964 @default.
- W3100180829 hasConcept C124101348 @default.
- W3100180829 hasConcept C127413603 @default.
- W3100180829 hasConcept C14036430 @default.
- W3100180829 hasConcept C146978453 @default.
- W3100180829 hasConcept C153180895 @default.
- W3100180829 hasConcept C154945302 @default.
- W3100180829 hasConcept C160633673 @default.
- W3100180829 hasConcept C163716315 @default.
- W3100180829 hasConcept C177264268 @default.
- W3100180829 hasConcept C199360897 @default.
- W3100180829 hasConcept C2524010 @default.
- W3100180829 hasConcept C2776151529 @default.
- W3100180829 hasConcept C28719098 @default.
- W3100180829 hasConcept C31972630 @default.
- W3100180829 hasConcept C33923547 @default.
- W3100180829 hasConcept C41008148 @default.
- W3100180829 hasConcept C58489278 @default.
- W3100180829 hasConcept C62520636 @default.