Matches in SemOpenAlex for { <https://semopenalex.org/work/W3100183562> ?p ?o ?g. }
- W3100183562 endingPage "6" @default.
- W3100183562 startingPage "6" @default.
- W3100183562 abstract "Genetic Algorithms (GA) are a powerful set of tools for search and optimization that mimic the process of natural selection, and have been used successfully in a wide variety of problems, including evolving neural networks to solve cognitive tasks. Despite their success, GAs sometimes fail to locate the highest peaks of the fitness landscape, in particular if the landscape is rugged and contains multiple peaks. Reaching distant and higher peaks is difficult because valleys need to be crossed, in a process that (at least temporarily) runs against the fitness maximization objective. Here we propose and test a number of information-theoretic (as well as network-based) measures that can be used in conjunction with a fitness maximization objective (so-called “neuro-correlates”) to evolve neural controllers for two widely different tasks: a behavioral task that requires information integration, and a cognitive task that requires memory and logic. We find that judiciously chosen neuro-correlates can significantly aid GAs to find the highest peaks." @default.
- W3100183562 created "2020-11-23" @default.
- W3100183562 creator A5012336827 @default.
- W3100183562 creator A5029972705 @default.
- W3100183562 creator A5031224365 @default.
- W3100183562 date "2015-12-25" @default.
- W3100183562 modified "2023-10-14" @default.
- W3100183562 title "Information-Theoretic Neuro-Correlates Boost Evolution of Cognitive Systems" @default.
- W3100183562 cites W1565202109 @default.
- W3100183562 cites W1964962870 @default.
- W3100183562 cites W1970434141 @default.
- W3100183562 cites W1970626830 @default.
- W3100183562 cites W1982089700 @default.
- W3100183562 cites W1990653637 @default.
- W3100183562 cites W1993766617 @default.
- W3100183562 cites W1996196563 @default.
- W3100183562 cites W1998567810 @default.
- W3100183562 cites W2005946215 @default.
- W3100183562 cites W2020320008 @default.
- W3100183562 cites W2022029210 @default.
- W3100183562 cites W2048013965 @default.
- W3100183562 cites W2065264265 @default.
- W3100183562 cites W2070484080 @default.
- W3100183562 cites W2074042583 @default.
- W3100183562 cites W2074086697 @default.
- W3100183562 cites W2077792698 @default.
- W3100183562 cites W2084585676 @default.
- W3100183562 cites W2090414491 @default.
- W3100183562 cites W2096596156 @default.
- W3100183562 cites W2097856935 @default.
- W3100183562 cites W2108100268 @default.
- W3100183562 cites W2108714018 @default.
- W3100183562 cites W2111935653 @default.
- W3100183562 cites W2118785900 @default.
- W3100183562 cites W2120745192 @default.
- W3100183562 cites W2124035349 @default.
- W3100183562 cites W2124290836 @default.
- W3100183562 cites W2128090174 @default.
- W3100183562 cites W2128957129 @default.
- W3100183562 cites W2129578597 @default.
- W3100183562 cites W2129903473 @default.
- W3100183562 cites W2131297064 @default.
- W3100183562 cites W2139348845 @default.
- W3100183562 cites W2158935941 @default.
- W3100183562 cites W2166110729 @default.
- W3100183562 cites W2171658832 @default.
- W3100183562 cites W2887002214 @default.
- W3100183562 cites W3099264534 @default.
- W3100183562 cites W3100258121 @default.
- W3100183562 cites W3105906550 @default.
- W3100183562 cites W4238284510 @default.
- W3100183562 doi "https://doi.org/10.3390/e18010006" @default.
- W3100183562 hasPublicationYear "2015" @default.
- W3100183562 type Work @default.
- W3100183562 sameAs 3100183562 @default.
- W3100183562 citedByCount "16" @default.
- W3100183562 countsByYear W31001835622016 @default.
- W3100183562 countsByYear W31001835622017 @default.
- W3100183562 countsByYear W31001835622018 @default.
- W3100183562 countsByYear W31001835622019 @default.
- W3100183562 countsByYear W31001835622020 @default.
- W3100183562 crossrefType "journal-article" @default.
- W3100183562 hasAuthorship W3100183562A5012336827 @default.
- W3100183562 hasAuthorship W3100183562A5029972705 @default.
- W3100183562 hasAuthorship W3100183562A5031224365 @default.
- W3100183562 hasBestOaLocation W31001835621 @default.
- W3100183562 hasConcept C111919701 @default.
- W3100183562 hasConcept C119857082 @default.
- W3100183562 hasConcept C126255220 @default.
- W3100183562 hasConcept C129564537 @default.
- W3100183562 hasConcept C136197465 @default.
- W3100183562 hasConcept C144024400 @default.
- W3100183562 hasConcept C149923435 @default.
- W3100183562 hasConcept C154945302 @default.
- W3100183562 hasConcept C15744967 @default.
- W3100183562 hasConcept C162324750 @default.
- W3100183562 hasConcept C169760540 @default.
- W3100183562 hasConcept C169900460 @default.
- W3100183562 hasConcept C177264268 @default.
- W3100183562 hasConcept C187736073 @default.
- W3100183562 hasConcept C199360897 @default.
- W3100183562 hasConcept C2776330181 @default.
- W3100183562 hasConcept C2780451532 @default.
- W3100183562 hasConcept C2908647359 @default.
- W3100183562 hasConcept C33923547 @default.
- W3100183562 hasConcept C41008148 @default.
- W3100183562 hasConcept C50644808 @default.
- W3100183562 hasConcept C81917197 @default.
- W3100183562 hasConcept C91852762 @default.
- W3100183562 hasConcept C98045186 @default.
- W3100183562 hasConceptScore W3100183562C111919701 @default.
- W3100183562 hasConceptScore W3100183562C119857082 @default.
- W3100183562 hasConceptScore W3100183562C126255220 @default.
- W3100183562 hasConceptScore W3100183562C129564537 @default.
- W3100183562 hasConceptScore W3100183562C136197465 @default.
- W3100183562 hasConceptScore W3100183562C144024400 @default.
- W3100183562 hasConceptScore W3100183562C149923435 @default.
- W3100183562 hasConceptScore W3100183562C154945302 @default.